Yang Gu


2025

pdf bib
Refined Evaluation for End-to-End Grammatical Error Correction Using an Alignment-Based Approach
Junrui Wang | Mengyang Qiu | Yang Gu | Zihao Huang | Jungyeul Park
Proceedings of the 31st International Conference on Computational Linguistics

We propose a refined alignment-based method to assess end-to-end grammatical error correction (GEC) systems, aiming to reproduce and improve results from existing evaluation tools, such as errant, even when applied to raw text input—reflecting real-world language learners’ writing scenarios. Our approach addresses challenges arising from sentence boundary detection deviations in text preprocessing, a factor overlooked by current GEC evaluation metrics. We demonstrate its effectiveness by replicating results through a re-implementation of errant, utilizing stanza for error annotation and simulating end-to-end evaluation from raw text. Additionally, we propose a potential multilingual errant, presenting Chinese and Korean GEC results. Previously, Chinese and Korean errant were implemented independently for each language, with different annotation formats. Our approach generates consistent error annotations across languages, establishing a basis for standardized grammatical error annotation and evaluation in multilingual GEC contexts.

pdf bib
Improving Automatic Grammatical Error Annotation for Chinese Through Linguistically-Informed Error Typology
Yang Gu | Zihao Huang | Min Zeng | Mengyang Qiu | Jungyeul Park
Proceedings of the 31st International Conference on Computational Linguistics

Comprehensive error annotation is essential for developing effective Grammatical Error Correction (GEC) systems and delivering meaningful feedback to learners. This paper introduces improvements to automatic grammatical error annotation for Chinese. Our refined framework addresses language-specific challenges that cause common spelling errors in Chinese, including pronunciation similarity, visual shape similarity, specialized participles, and word ordering. In a case study, we demonstrated our system’s ability to provide detailed feedback on 12-16% of all errors by identifying them under our new error typology, specific enough to uncover subtle differences in error patterns between L1 and L2 writings. In addition to improving automated feedback for writers, this work also highlights the value of incorporating language-specific features in NLP systems.

2023

pdf bib
Enhancing Multilingual Document-Grounded Dialogue Using Cascaded Prompt-Based Post-Training Models
Jun Liu | Shuang Cheng | Zineng Zhou | Yang Gu | Jian Ye | Haiyong Luo
Proceedings of the Third DialDoc Workshop on Document-grounded Dialogue and Conversational Question Answering

The Dialdoc23 shared task presents a Multilingual Document-Grounded Dialogue Systems (MDGDS) challenge, where system responses are generated in multiple languages using user’s queries, historical dialogue records and relevant passages. A major challenge for this task is the limited training data available in low-resource languages such as French and Vietnamese. In this paper, we propose Cascaded Prompt-based Post-training Models, dividing the task into three subtasks: Retrieval, Reranking and Generation. We conduct post-training on high-resource language such as English and Chinese to enhance performance of low-resource languages by using the similarities of languages. Additionally, we utilize the prompt method to activate model’s ability on diverse languages within the dialogue domain and explore which prompt is a good prompt. Our comprehensive experiments demonstrate the effectiveness of our proposed methods, which achieved the first place on the leaderboard with a total score of 215.40 in token-level F1, SacreBleu, and Rouge-L metrics.