Yang Liu

Microsoft Cognitive Services Research

Other people with similar names: Yang Liu (May refer to several people), Yang Liu (3M Health Information Systems), Yang Liu (University of Helsinki), Yang Liu (National University of Defense Technology), Yang Liu (Edinburgh), Yang (Janet) Liu (刘洋; Georgetown), Yang Liu (Georgetown University), Yang Liu (刘扬; Ph.D Purdue; ICSI, Dallas, Facebook, Liulishuo, Amazon), Yang Liu (刘洋; ICT, Tsinghua, Beijing Academy of Artificial Intelligence), Yang Liu (Peking University), Yang Liu (Univ. of Michigan, UC Santa Cruz)


2021

pdf bib
Want To Reduce Labeling Cost? GPT-3 Can Help
Shuohang Wang | Yang Liu | Yichong Xu | Chenguang Zhu | Michael Zeng
Findings of the Association for Computational Linguistics: EMNLP 2021

Data annotation is a time-consuming and labor-intensive process for many NLP tasks. Although there exist various methods to produce pseudo data labels, they are often task-specific and require a decent amount of labeled data to start with. Recently, the immense language model GPT-3 with 170 billion parameters has achieved tremendous improvement across many few-shot learning tasks. In this paper, we explore ways to leverage GPT-3 as a low-cost data labeler to train other models. We find that to make the downstream model achieve the same performance on a variety of NLU and NLG tasks, it costs 50% to 96% less to use labels from GPT-3 than using labels from humans. Furthermore, we propose a novel framework of combining pseudo labels from GPT-3 with human labels, which leads to even better performance. These results present a cost-effective data labeling methodology that is generalizable to many practical applications.

pdf bib
Modeling Entity Knowledge for Fact Verification
Yang Liu | Chenguang Zhu | Michael Zeng
Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER)

Fact verification is a challenging task of identifying the truthfulness of given claims based on the retrieval of relevant evidence texts. Many claims require understanding and reasoning over external entity information for precise verification. In this paper, we propose a novel fact verification model using entity knowledge to enhance its performance. We retrieve descriptive text from Wikipedia for each entity, and then encode these descriptions by a smaller lightweight network to be fed into the main verification model. Furthermore, we boost model performance by adopting and predicting the relatedness between the claim and each evidence as additional signals. We demonstrate experimentally on a large-scale benchmark dataset FEVER that our framework achieves competitive results with a FEVER score of 72.89% on the test set.