Yangfan Zhang
2023
Event-Centric Query Expansion in Web Search
Yanan Zhang
|
Weijie Cui
|
Yangfan Zhang
|
Xiaoling Bai
|
Zhe Zhang
|
Jin Ma
|
Xiang Chen
|
Tianhua Zhou
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)
In search engines, query expansion (QE) is a crucial technique to improve search experience. Previous studies often rely on long-term search log mining, which leads to slow updates and is sub-optimal for time-sensitive news searches. In this work, we present Event-Centric Query Expansion (EQE), the QE system used in a famous Chinese search engine. EQE utilizes a novel event retrieval framework that consists of four stages, i.e., event collection, event reformulation, semantic retrieval and online ranking, which can select the best expansion from a significant amount of potential events rapidly and accurately. Specifically, we first collect and filter news headlines from websites. Then we propose a generation model that incorporates contrastive learning and prompt-tuning techniques to reformulate these headlines to concise candidates. Additionally, we fine-tune a dual-tower semantic model to serve as an encoder for event retrieval and explore a two-stage contrastive training approach to enhance the accuracy of event retrieval. Finally, we rank the retrieved events and select the optimal one as QE, which is then used to improve the retrieval of event-related documents. Through offline analysis and online A/B testing, we observed that the EQE system has significantly improved many indicators compared to the baseline. The system has been deployed in a real production environment and serves hundreds of millions of users.
2022
Title2Event: Benchmarking Open Event Extraction with a Large-scale Chinese Title Dataset
Haolin Deng
|
Yanan Zhang
|
Yangfan Zhang
|
Wangyang Ying
|
Changlong Yu
|
Jun Gao
|
Wei Wang
|
Xiaoling Bai
|
Nan Yang
|
Jin Ma
|
Xiang Chen
|
Tianhua Zhou
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Event extraction (EE) is crucial to downstream tasks such as new aggregation and event knowledge graph construction. Most existing EE datasets manually define fixed event types and design specific schema for each of them, failing to cover diverse events emerging from the online text. Moreover, news titles, an important source of event mentions, have not gained enough attention in current EE research. In this paper, we present Title2Event, a large-scale sentence-level dataset benchmarking Open Event Extraction without restricting event types. Title2Event contains more than 42,000 news titles in 34 topics collected from Chinese web pages. To the best of our knowledge, it is currently the largest manually annotated Chinese dataset for open event extraction. We further conduct experiments on Title2Event with different models and show that the characteristics of titles make it challenging for event extraction, addressing the significance of advanced study on this problem. The dataset and baseline codes are available at https://open-event-hub.github.io/title2event.