Yangfeng Ji


2021

pdf bib
Proceedings of the 1st Workshop on Document-grounded Dialogue and Conversational Question Answering (DialDoc 2021)
Song Feng | Siva Reddy | Malihe Alikhani | He He | Yangfeng Ji | Mohit Iyyer | Zhou Yu
Proceedings of the 1st Workshop on Document-grounded Dialogue and Conversational Question Answering (DialDoc 2021)

pdf bib
The GEM Benchmark: Natural Language Generation, its Evaluation and Metrics
Sebastian Gehrmann | Tosin Adewumi | Karmanya Aggarwal | Pawan Sasanka Ammanamanchi | Anuoluwapo Aremu | Antoine Bosselut | Khyathi Raghavi Chandu | Miruna-Adriana Clinciu | Dipanjan Das | Kaustubh Dhole | Wanyu Du | Esin Durmus | Ondřej Dušek | Chris Chinenye Emezue | Varun Gangal | Cristina Garbacea | Tatsunori Hashimoto | Yufang Hou | Yacine Jernite | Harsh Jhamtani | Yangfeng Ji | Shailza Jolly | Mihir Kale | Dhruv Kumar | Faisal Ladhak | Aman Madaan | Mounica Maddela | Khyati Mahajan | Saad Mahamood | Bodhisattwa Prasad Majumder | Pedro Henrique Martins | Angelina McMillan-Major | Simon Mille | Emiel van Miltenburg | Moin Nadeem | Shashi Narayan | Vitaly Nikolaev | Andre Niyongabo Rubungo | Salomey Osei | Ankur Parikh | Laura Perez-Beltrachini | Niranjan Ramesh Rao | Vikas Raunak | Juan Diego Rodriguez | Sashank Santhanam | João Sedoc | Thibault Sellam | Samira Shaikh | Anastasia Shimorina | Marco Antonio Sobrevilla Cabezudo | Hendrik Strobelt | Nishant Subramani | Wei Xu | Diyi Yang | Akhila Yerukola | Jiawei Zhou
Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)

We introduce GEM, a living benchmark for natural language Generation (NLG), its Evaluation, and Metrics. Measuring progress in NLG relies on a constantly evolving ecosystem of automated metrics, datasets, and human evaluation standards. Due to this moving target, new models often still evaluate on divergent anglo-centric corpora with well-established, but flawed, metrics. This disconnect makes it challenging to identify the limitations of current models and opportunities for progress. Addressing this limitation, GEM provides an environment in which models can easily be applied to a wide set of tasks and in which evaluation strategies can be tested. Regular updates to the benchmark will help NLG research become more multilingual and evolve the challenge alongside models. This paper serves as the description of the data for the 2021 shared task at the associated GEM Workshop.

pdf bib
Explaining Neural Network Predictions on Sentence Pairs via Learning Word-Group Masks
Hanjie Chen | Song Feng | Jatin Ganhotra | Hui Wan | Chulaka Gunasekara | Sachindra Joshi | Yangfeng Ji
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Explaining neural network models is important for increasing their trustworthiness in real-world applications. Most existing methods generate post-hoc explanations for neural network models by identifying individual feature attributions or detecting interactions between adjacent features. However, for models with text pairs as inputs (e.g., paraphrase identification), existing methods are not sufficient to capture feature interactions between two texts and their simple extension of computing all word-pair interactions between two texts is computationally inefficient. In this work, we propose the Group Mask (GMASK) method to implicitly detect word correlations by grouping correlated words from the input text pair together and measure their contribution to the corresponding NLP tasks as a whole. The proposed method is evaluated with two different model architectures (decomposable attention model and BERT) across four datasets, including natural language inference and paraphrase identification tasks. Experiments show the effectiveness of GMASK in providing faithful explanations to these models.

pdf bib
Contextualizing Variation in Text Style Transfer Datasets
Stephanie Schoch | Wanyu Du | Yangfeng Ji
Proceedings of the 14th International Conference on Natural Language Generation

Text style transfer involves rewriting the content of a source sentence in a target style. Despite there being a number of style tasks with available data, there has been limited systematic discussion of how text style datasets relate to each other. This understanding, however, is likely to have implications for selecting multiple data sources for model training. While it is prudent to consider inherent stylistic properties when determining these relationships, we also must consider how a style is realized in a particular dataset. In this paper, we conduct several empirical analyses of existing text style datasets. Based on our results, we propose a categorization of stylistic and dataset properties to consider when utilizing or comparing text style datasets.

2020

pdf bib
A Tale of Two Linkings: Dynamically Gating between Schema Linking and Structural Linking for Text-to-SQL Parsing
Sanxing Chen | Aidan San | Xiaodong Liu | Yangfeng Ji
Proceedings of the 28th International Conference on Computational Linguistics

In Text-to-SQL semantic parsing, selecting the correct entities (tables and columns) for the generated SQL query is both crucial and challenging; the parser is required to connect the natural language (NL) question and the SQL query to the structured knowledge in the database. We formulate two linking processes to address this challenge: schema linking which links explicit NL mentions to the database and structural linking which links the entities in the output SQL with their structural relationships in the database schema. Intuitively, the effectiveness of these two linking processes changes based on the entity being generated, thus we propose to dynamically choose between them using a gating mechanism. Integrating the proposed method with two graph neural network-based semantic parsers together with BERT representations demonstrates substantial gains in parsing accuracy on the challenging Spider dataset. Analyses show that our proposed method helps to enhance the structure of the model output when generating complicated SQL queries and offers more explainable predictions.

pdf bib
Reevaluating Adversarial Examples in Natural Language
John Morris | Eli Lifland | Jack Lanchantin | Yangfeng Ji | Yanjun Qi
Findings of the Association for Computational Linguistics: EMNLP 2020

State-of-the-art attacks on NLP models lack a shared definition of a what constitutes a successful attack. We distill ideas from past work into a unified framework: a successful natural language adversarial example is a perturbation that fools the model and follows some linguistic constraints. We then analyze the outputs of two state-of-the-art synonym substitution attacks. We find that their perturbations often do not preserve semantics, and 38% introduce grammatical errors. Human surveys reveal that to successfully preserve semantics, we need to significantly increase the minimum cosine similarities between the embeddings of swapped words and between the sentence encodings of original and perturbed sentences.With constraints adjusted to better preserve semantics and grammaticality, the attack success rate drops by over 70 percentage points.

pdf bib
Finding Friends and Flipping Frenemies: Automatic Paraphrase Dataset Augmentation Using Graph Theory
Hannah Chen | Yangfeng Ji | David Evans
Findings of the Association for Computational Linguistics: EMNLP 2020

Most NLP datasets are manually labeled, so suffer from inconsistent labeling or limited size. We propose methods for automatically improving datasets by viewing them as graphs with expected semantic properties. We construct a paraphrase graph from the provided sentence pair labels, and create an augmented dataset by directly inferring labels from the original sentence pairs using a transitivity property. We use structural balance theory to identify likely mislabelings in the graph, and flip their labels. We evaluate our methods on paraphrase models trained using these datasets starting from a pretrained BERT model, and find that the automatically-enhanced training sets result in more accurate models.

pdf bib
Generating Hierarchical Explanations on Text Classification via Feature Interaction Detection
Hanjie Chen | Guangtao Zheng | Yangfeng Ji
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Generating explanations for neural networks has become crucial for their applications in real-world with respect to reliability and trustworthiness. In natural language processing, existing methods usually provide important features which are words or phrases selected from an input text as an explanation, but ignore the interactions between them. It poses challenges for humans to interpret an explanation and connect it to model prediction. In this work, we build hierarchical explanations by detecting feature interactions. Such explanations visualize how words and phrases are combined at different levels of the hierarchy, which can help users understand the decision-making of black-box models. The proposed method is evaluated with three neural text classifiers (LSTM, CNN, and BERT) on two benchmark datasets, via both automatic and human evaluations. Experiments show the effectiveness of the proposed method in providing explanations that are both faithful to models and interpretable to humans.

pdf bib
Pointwise Paraphrase Appraisal is Potentially Problematic
Hannah Chen | Yangfeng Ji | David Evans
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop

The prevailing approach for training and evaluating paraphrase identification models is constructed as a binary classification problem: the model is given a pair of sentences, and is judged by how accurately it classifies pairs as either paraphrases or non-paraphrases. This pointwise-based evaluation method does not match well the objective of most real world applications, so the goal of our work is to understand how models which perform well under pointwise evaluation may fail in practice and find better methods for evaluating paraphrase identification models. As a first step towards that goal, we show that although the standard way of fine-tuning BERT for paraphrase identification by pairing two sentences as one sequence results in a model with state-of-the-art performance, that model may perform poorly on simple tasks like identifying pairs with two identical sentences. Moreover, we show that these models may even predict a pair of randomly-selected sentences with higher paraphrase score than a pair of identical ones.

pdf bib
Learning Variational Word Masks to Improve the Interpretability of Neural Text Classifiers
Hanjie Chen | Yangfeng Ji
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

To build an interpretable neural text classifier, most of the prior work has focused on designing inherently interpretable models or finding faithful explanations. A new line of work on improving model interpretability has just started, and many existing methods require either prior information or human annotations as additional inputs in training. To address this limitation, we propose the variational word mask (VMASK) method to automatically learn task-specific important words and reduce irrelevant information on classification, which ultimately improves the interpretability of model predictions. The proposed method is evaluated with three neural text classifiers (CNN, LSTM, and BERT) on seven benchmark text classification datasets. Experiments show the effectiveness of VMASK in improving both model prediction accuracy and interpretability.

pdf bib
The Amazing World of Neural Language Generation
Yangfeng Ji | Antoine Bosselut | Thomas Wolf | Asli Celikyilmaz
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Tutorial Abstracts

Neural Language Generation (NLG) – using neural network models to generate coherent text – is among the most promising methods for automated text creation. Recent years have seen a paradigm shift in neural text generation, caused by the advances in deep contextual language modeling (e.g., LSTMs, GPT, GPT2) and transfer learning (e.g., ELMo, BERT). While these tools have dramatically improved the state of NLG, particularly for low resources tasks, state-of-the-art NLG models still face many challenges: a lack of diversity in generated text, commonsense violations in depicted situations, difficulties in making use of factual information, and difficulties in designing reliable evaluation metrics. In this tutorial, we will present an overview of the current state-of-the-art in neural network architectures, and how they shaped recent research directions in text generation. We will discuss how and why these models succeed/fail at generating coherent text, and provide insights on several applications.

pdf bib
“This is a Problem, Don’t You Agree?” Framing and Bias in Human Evaluation for Natural Language Generation
Stephanie Schoch | Diyi Yang | Yangfeng Ji
Proceedings of the 1st Workshop on Evaluating NLG Evaluation

Despite recent efforts reviewing current human evaluation practices for natural language generation (NLG) research, the lack of reported question wording and potential for framing effects or cognitive biases influencing results has been widely overlooked. In this opinion paper, we detail three possible framing effects and cognitive biases that could be imposed on human evaluation in NLG. Based on this, we make a call for increased transparency for human evaluation in NLG and propose the concept of human evaluation statements. We make several recommendations for design details to report that could potentially influence results, such as question wording, and suggest that reporting pertinent design details can help increase comparability across studies as well as reproducibility of results.

2019

pdf bib
An Empirical Comparison on Imitation Learning and Reinforcement Learning for Paraphrase Generation
Wanyu Du | Yangfeng Ji
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Generating paraphrases from given sentences involves decoding words step by step from a large vocabulary. To learn a decoder, supervised learning which maximizes the likelihood of tokens always suffers from the exposure bias. Although both reinforcement learning (RL) and imitation learning (IL) have been widely used to alleviate the bias, the lack of direct comparison leads to only a partial image on their benefits. In this work, we present an empirical study on how RL and IL can help boost the performance of generating paraphrases, with the pointer-generator as a base model. Experiments on the benchmark datasets show that (1) imitation learning is constantly better than reinforcement learning; and (2) the pointer-generator models with imitation learning outperform the state-of-the-art methods with a large margin.

2018

pdf bib
Neural Text Generation in Stories Using Entity Representations as Context
Elizabeth Clark | Yangfeng Ji | Noah A. Smith
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

We introduce an approach to neural text generation that explicitly represents entities mentioned in the text. Entity representations are vectors that are updated as the text proceeds; they are designed specifically for narrative text like fiction or news stories. Our experiments demonstrate that modeling entities offers a benefit in two automatic evaluations: mention generation (in which a model chooses which entity to mention next and which words to use in the mention) and selection between a correct next sentence and a distractor from later in the same story. We also conduct a human evaluation on automatically generated text in story contexts; this study supports our emphasis on entities and suggests directions for further research.

2017

pdf bib
Neural Discourse Structure for Text Categorization
Yangfeng Ji | Noah A. Smith
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We show that discourse structure, as defined by Rhetorical Structure Theory and provided by an existing discourse parser, benefits text categorization. Our approach uses a recursive neural network and a newly proposed attention mechanism to compute a representation of the text that focuses on salient content, from the perspective of both RST and the task. Experiments consider variants of the approach and illustrate its strengths and weaknesses.

pdf bib
Dynamic Entity Representations in Neural Language Models
Yangfeng Ji | Chenhao Tan | Sebastian Martschat | Yejin Choi | Noah A. Smith
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Understanding a long document requires tracking how entities are introduced and evolve over time. We present a new type of language model, EntityNLM, that can explicitly model entities, dynamically update their representations, and contextually generate their mentions. Our model is generative and flexible; it can model an arbitrary number of entities in context while generating each entity mention at an arbitrary length. In addition, it can be used for several different tasks such as language modeling, coreference resolution, and entity prediction. Experimental results with all these tasks demonstrate that our model consistently outperforms strong baselines and prior work.

2016

pdf bib
Multiplicative Representations for Unsupervised Semantic Role Induction
Yi Luan | Yangfeng Ji | Hannaneh Hajishirzi | Boyang Li
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

pdf bib
A Latent Variable Recurrent Neural Network for Discourse-Driven Language Models
Yangfeng Ji | Gholamreza Haffari | Jacob Eisenstein
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

2015

pdf bib
Better Document-level Sentiment Analysis from RST Discourse Parsing
Parminder Bhatia | Yangfeng Ji | Jacob Eisenstein
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

pdf bib
Closing the Gap: Domain Adaptation from Explicit to Implicit Discourse Relations
Yangfeng Ji | Gongbo Zhang | Jacob Eisenstein
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

pdf bib
deltaBLEU: A Discriminative Metric for Generation Tasks with Intrinsically Diverse Targets
Michel Galley | Chris Brockett | Alessandro Sordoni | Yangfeng Ji | Michael Auli | Chris Quirk | Margaret Mitchell | Jianfeng Gao | Bill Dolan
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

pdf bib
A Neural Network Approach to Context-Sensitive Generation of Conversational Responses
Alessandro Sordoni | Michel Galley | Michael Auli | Chris Brockett | Yangfeng Ji | Margaret Mitchell | Jian-Yun Nie | Jianfeng Gao | Bill Dolan
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
One Vector is Not Enough: Entity-Augmented Distributed Semantics for Discourse Relations
Yangfeng Ji | Jacob Eisenstein
Transactions of the Association for Computational Linguistics, Volume 3

Discourse relations bind smaller linguistic units into coherent texts. Automatically identifying discourse relations is difficult, because it requires understanding the semantics of the linked arguments. A more subtle challenge is that it is not enough to represent the meaning of each argument of a discourse relation, because the relation may depend on links between lowerlevel components, such as entity mentions. Our solution computes distributed meaning representations for each discourse argument by composition up the syntactic parse tree. We also perform a downward compositional pass to capture the meaning of coreferent entity mentions. Implicit discourse relations are then predicted from these two representations, obtaining substantial improvements on the Penn Discourse Treebank.

2014

pdf bib
Extracting Lexically Divergent Paraphrases from Twitter
Wei Xu | Alan Ritter | Chris Callison-Burch | William B. Dolan | Yangfeng Ji
Transactions of the Association for Computational Linguistics, Volume 2

We present MultiP (Multi-instance Learning Paraphrase Model), a new model suited to identify paraphrases within the short messages on Twitter. We jointly model paraphrase relations between word and sentence pairs and assume only sentence-level annotations during learning. Using this principled latent variable model alone, we achieve the performance competitive with a state-of-the-art method which combines a latent space model with a feature-based supervised classifier. Our model also captures lexically divergent paraphrases that differ from yet complement previous methods; combining our model with previous work significantly outperforms the state-of-the-art. In addition, we present a novel annotation methodology that has allowed us to crowdsource a paraphrase corpus from Twitter. We make this new dataset available to the research community.

pdf bib
Mining Themes and Interests in the Asperger’s and Autism Community
Yangfeng Ji | Hwajung Hong | Rosa Arriaga | Agata Rozga | Gregory Abowd | Jacob Eisenstein
Proceedings of the Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality

pdf bib
Representation Learning for Text-level Discourse Parsing
Yangfeng Ji | Jacob Eisenstein
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2013

pdf bib
Discriminative Improvements to Distributional Sentence Similarity
Yangfeng Ji | Jacob Eisenstein
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

Search
Co-authors