Yannis Katsis


pdf bib
Zero-shot Topical Text Classification with LLMs - an Experimental Study
Shai Gretz | Alon Halfon | Ilya Shnayderman | Orith Toledo-Ronen | Artem Spector | Lena Dankin | Yannis Katsis | Ofir Arviv | Yoav Katz | Noam Slonim | Liat Ein-Dor
Findings of the Association for Computational Linguistics: EMNLP 2023

Topical Text Classification (TTC) is an ancient, yet timely research area in natural language processing, with many practical applications. The recent dramatic advancements in large LMs raise the question of how well these models can perform in this task in a zero-shot scenario. Here, we share a first comprehensive study, comparing the zero-shot performance of a variety of LMs over TTC23, a large benchmark collection of 23 publicly available TTC datasets, covering a wide range of domains and styles. In addition, we leverage this new TTC benchmark to create LMs that are specialized in TTC, by fine-tuning these LMs over a subset of the datasets and evaluating their performance over the remaining, held-out datasets. We show that the TTC-specialized LMs obtain the top performance on our benchmark, by a significant margin. Our code and model are made available for the community. We hope that the results presented in this work will serve as a useful guide for practitioners interested in topical text classification.

pdf bib
Beyond Labels: Empowering Human Annotators with Natural Language Explanations through a Novel Active-Learning Architecture
Bingsheng Yao | Ishan Jindal | Lucian Popa | Yannis Katsis | Sayan Ghosh | Lihong He | Yuxuan Lu | Shashank Srivastava | Yunyao Li | James Hendler | Dakuo Wang
Findings of the Association for Computational Linguistics: EMNLP 2023

Real-world domain experts (e.g., doctors) rarely annotate only a decision label in their day-to-day workflow without providing explanations. Yet, existing low-resource learning techniques, such as Active Learning (AL), that aim to support human annotators mostly focus on the label while neglecting the natural language explanation of a data point. This work proposes a novel AL architecture to support experts’ real-world need for label and explanation annotations in low-resource scenarios. Our AL architecture leverages an explanation-generation model to produce explanations guided by human explanations, a prediction model that utilizes generated explanations toward prediction faithfully, and a novel data diversity-based AL sampling strategy that benefits from the explanation annotations. Automated and human evaluations demonstrate the effectiveness of incorporating explanations into AL sampling and the improved human annotation efficiency and trustworthiness with our AL architecture. Additional ablation studies illustrate the potential of our AL architecture for transfer learning, generalizability, and integration with large language models (LLMs). While LLMs exhibit exceptional explanation-generation capabilities for relatively simple tasks, their effectiveness in complex real-world tasks warrants further in-depth study.


pdf bib
A Comparative Analysis between Human-in-the-loop Systems and Large Language Models for Pattern Extraction Tasks
Maeda Hanafi | Yannis Katsis | Ishan Jindal | Lucian Popa
Proceedings of the Fourth Workshop on Data Science with Human-in-the-Loop (Language Advances)

Building a natural language processing (NLP) model can be challenging for end-users such as analysts, journalists, investigators, etc., especially given that they will likely apply existing tools out of the box. In this article, we take a closer look at how two complementary approaches, a state-of-the-art human-in-the-loop (HITL) tool and a generative language model (GPT-3) perform out of the box, that is, without fine-tuning. Concretely, we compare these approaches when end-users with little technical background are given pattern extraction tasks from text. We discover that the HITL tool performs with higher precision, while GPT-3 requires some level of engineering in its input prompts as well as post-processing on its output before it can achieve comparable results. Future work in this space should look further into the advantages and disadvantages of the two approaches, HITL and generative language model, as well as into ways to optimally combine them.

pdf bib
Stock Price Volatility Prediction: A Case Study with AutoML
Hilal Pataci | Yunyao Li | Yannis Katsis | Yada Zhu | Lucian Popa
Proceedings of the Fourth Workshop on Financial Technology and Natural Language Processing (FinNLP)

Accurate prediction of the stock price volatility, the rate at which the price of a stock increases or decreases over a particular period, is an important problem in finance. Inaccurate prediction of stock price volatility might lead to investment risk and financial loss, while accurate prediction might generate significant returns for investors. Several studies investigated stock price volatility prediction in a regression task by using the transcripts of earning calls (quarterly conference calls held by public companies) with Natural Language Processing (NLP) techniques. Existing studies use the entire transcript and this degrades the performance due to noise caused by irrelevant information that might not have a significant impact on stock price volatility. In order to overcome these limitations, by considering stock price volatility prediction as a classification task, we explore several denoising approaches, ranging from general-purpose approaches to techniques specific to finance to remove the noise, and leverage AutoML systems that enable auto-exploration of a wide variety of models. Our preliminary findings indicate that domain-specific denoising approaches provide better results than general-purpose approaches, moreover AutoML systems provide promising results.

pdf bib
Label Sleuth: From Unlabeled Text to a Classifier in a Few Hours
Eyal Shnarch | Alon Halfon | Ariel Gera | Marina Danilevsky | Yannis Katsis | Leshem Choshen | Martin Santillan Cooper | Dina Epelboim | Zheng Zhang | Dakuo Wang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Label Sleuth is an open source platform for building text classifiers which does not require coding skills nor machine learning knowledge.- Project website: [https://www.label-sleuth.org/](https://www.label-sleuth.org/)- Link to screencast video: [https://vimeo.com/735675461](https://vimeo.com/735675461)### AbstractText classification can be useful in many real-world scenarios, saving a lot of time for end users. However, building a classifier generally requires coding skills and ML knowledge, which poses a significant barrier for many potential users. To lift this barrier we introduce *Label Sleuth*, a free open source system for labeling and creating text classifiers. This system is unique for: - being a no-code system, making NLP accessible for non-experts. - guiding its users throughout the entire labeling process until they obtain their desired classifier, making the process efficient - from cold start to a classifier in a few hours. - being open for configuration and extension by developers. By open sourcing Label Sleuth we hope to build a community of users and developers that will widen the utilization of NLP models.

pdf bib
AIT-QA: Question Answering Dataset over Complex Tables in the Airline Industry
Yannis Katsis | Saneem Chemmengath | Vishwajeet Kumar | Samarth Bharadwaj | Mustafa Canim | Michael Glass | Alfio Gliozzo | Feifei Pan | Jaydeep Sen | Karthik Sankaranarayanan | Soumen Chakrabarti
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track

Table Question Answering (Table QA) systems have been shown to be highly accurate when trained and tested on open-domain datasets built on top of Wikipedia tables. However, it is not clear whether their performance remains the same when applied to domain-specific scientific and business documents, encountered in industrial settings, which exhibit some unique characteristics: (a) they contain tables with a much more complex layout than Wikipedia tables (including hierarchical row and column headers), (b) they contain domain-specific terms, and (c) they are typically not accompanied by domain-specific labeled data that can be used to train Table QA models. To understand the performance of Table QA approaches in this setting, we introduce AIT-QA; a domain-specific Table QA test dataset. While focusing on the airline industry, AIT-QA reflects the challenges that domain-specific documents pose to Table QA, outlined above. In this work, we describe the creation of the dataset and report zero-shot experimental results of three SOTA Table QA methods. The results clearly expose the limitations of current methods with a best accuracy of just 51.8%. We also present pragmatic table pre-processing steps to pivot and project complex tables into a layout suitable for the SOTA Table QA models. Finally, we provide data-driven insights on how different aspects of this setting (including hierarchical headers, domain-specific terminology, and paraphrasing) affect Table QA methods, in order to help the community develop improved methods for domain-specific Table QA.


pdf bib
Development of an Enterprise-Grade Contract Understanding System
Arvind Agarwal | Laura Chiticariu | Poornima Chozhiyath Raman | Marina Danilevsky | Diman Ghazi | Ankush Gupta | Shanmukha Guttula | Yannis Katsis | Rajasekar Krishnamurthy | Yunyao Li | Shubham Mudgal | Vitobha Munigala | Nicholas Phan | Dhaval Sonawane | Sneha Srinivasan | Sudarshan R. Thitte | Mitesh Vasa | Ramiya Venkatachalam | Vinitha Yaski | Huaiyu Zhu
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Papers

Contracts are arguably the most important type of business documents. Despite their significance in business, legal contract review largely remains an arduous, expensive and manual process. In this paper, we describe TECUS: a commercial system designed and deployed for contract understanding and used by a wide range of enterprise users for the past few years. We reflect on the challenges and design decisions when building TECUS. We also summarize the data science life cycle of TECUS and share lessons learned.

pdf bib
BLAR: Biomedical Local Acronym Resolver
William Hogan | Yoshiki Vazquez Baeza | Yannis Katsis | Tyler Baldwin | Ho-Cheol Kim | Chun-Nan Hsu
Proceedings of the 20th Workshop on Biomedical Language Processing

NLP has emerged as an essential tool to extract knowledge from the exponentially increasing volumes of biomedical texts. Many NLP tasks, such as named entity recognition and named entity normalization, are especially challenging in the biomedical domain partly because of the prolific use of acronyms. Long names for diseases, bacteria, and chemicals are often replaced by acronyms. We propose Biomedical Local Acronym Resolver (BLAR), a high-performing acronym resolver that leverages state-of-the-art (SOTA) pre-trained language models to accurately resolve local acronyms in biomedical texts. We test BLAR on the Ab3P corpus and achieve state-of-the-art results compared to the current best-performing local acronym resolution algorithms and models.


pdf bib
A Survey of the State of Explainable AI for Natural Language Processing
Marina Danilevsky | Kun Qian | Ranit Aharonov | Yannis Katsis | Ban Kawas | Prithviraj Sen
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

Recent years have seen important advances in the quality of state-of-the-art models, but this has come at the expense of models becoming less interpretable. This survey presents an overview of the current state of Explainable AI (XAI), considered within the domain of Natural Language Processing (NLP). We discuss the main categorization of explanations, as well as the various ways explanations can be arrived at and visualized. We detail the operations and explainability techniques currently available for generating explanations for NLP model predictions, to serve as a resource for model developers in the community. Finally, we point out the current gaps and encourage directions for future work in this important research area.

pdf bib
CORD-19: The COVID-19 Open Research Dataset
Lucy Lu Wang | Kyle Lo | Yoganand Chandrasekhar | Russell Reas | Jiangjiang Yang | Doug Burdick | Darrin Eide | Kathryn Funk | Yannis Katsis | Rodney Michael Kinney | Yunyao Li | Ziyang Liu | William Merrill | Paul Mooney | Dewey A. Murdick | Devvret Rishi | Jerry Sheehan | Zhihong Shen | Brandon Stilson | Alex D. Wade | Kuansan Wang | Nancy Xin Ru Wang | Christopher Wilhelm | Boya Xie | Douglas M. Raymond | Daniel S. Weld | Oren Etzioni | Sebastian Kohlmeier
Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020

The COVID-19 Open Research Dataset (CORD-19) is a growing resource of scientific papers on COVID-19 and related historical coronavirus research. CORD-19 is designed to facilitate the development of text mining and information retrieval systems over its rich collection of metadata and structured full text papers. Since its release, CORD-19 has been downloaded over 200K times and has served as the basis of many COVID-19 text mining and discovery systems. In this article, we describe the mechanics of dataset construction, highlighting challenges and key design decisions, provide an overview of how CORD-19 has been used, and describe several shared tasks built around the dataset. We hope this resource will continue to bring together the computing community, biomedical experts, and policy makers in the search for effective treatments and management policies for COVID-19.