Yanshuai Cao


2021

pdf bib
Optimizing Deeper Transformers on Small Datasets
Peng Xu | Dhruv Kumar | Wei Yang | Wenjie Zi | Keyi Tang | Chenyang Huang | Jackie Chi Kit Cheung | Simon J.D. Prince | Yanshuai Cao
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

It is a common belief that training deep transformers from scratch requires large datasets. Consequently, for small datasets, people usually use shallow and simple additional layers on top of pre-trained models during fine-tuning. This work shows that this does not always need to be the case: with proper initialization and optimization, the benefits of very deep transformers can carry over to challenging tasks with small datasets, including Text-to-SQL semantic parsing and logical reading comprehension. In particular, we successfully train 48 layers of transformers, comprising 24 fine-tuned layers from pre-trained RoBERTa and 24 relation-aware layers trained from scratch. With fewer training steps and no task-specific pre-training, we obtain the state of the art performance on the challenging cross-domain Text-to-SQL parsing benchmark Spider. We achieve this by deriving a novel Data dependent Transformer Fixed-update initialization scheme (DT-Fixup), inspired by the prior T-Fixup work. Further error analysis shows that increasing depth can help improve generalization on small datasets for hard cases that require reasoning and structural understanding.

pdf bib
Code Generation from Natural Language with Less Prior Knowledge and More Monolingual Data
Sajad Norouzi | Keyi Tang | Yanshuai Cao
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Training datasets for semantic parsing are typically small due to the higher expertise required for annotation than most other NLP tasks. As a result, models for this application usually need additional prior knowledge to be built into the architecture or algorithm. The increased dependency on human experts hinders automation and raises the development and maintenance costs in practice. This work investigates whether a generic transformer-based seq2seq model can achieve competitive performance with minimal code-generation-specific inductive bias design. By exploiting a relatively sizeable monolingual corpus of the target programming language, which is cheap to mine from the web, we achieved 81.03% exact match accuracy on Django and 32.57 BLEU score on CoNaLa. Both are SOTA to the best of our knowledge. This positive evidence highlights a potentially easier path toward building accurate semantic parsers in practice.

pdf bib
TURING: an Accurate and Interpretable Multi-Hypothesis Cross-Domain Natural Language Database Interface
Peng Xu | Wenjie Zi | Hamidreza Shahidi | Ákos Kádár | Keyi Tang | Wei Yang | Jawad Ateeq | Harsh Barot | Meidan Alon | Yanshuai Cao
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

A natural language database interface (NLDB) can democratize data-driven insights for non-technical users. However, existing Text-to-SQL semantic parsers cannot achieve high enough accuracy in the cross-database setting to allow good usability in practice. This work presents TURING, a NLDB system toward bridging this gap. The cross-domain semantic parser of TURING with our novel value prediction method achieves 75.1% execution accuracy, and 78.3% top-5 beam execution accuracy on the Spider validation set (Yu et al., 2018b). To benefit from the higher beam accuracy, we design an interactive system where the SQL hypotheses in the beam are explained step-by-step in natural language, with their differences highlighted. The user can then compare and judge the hypotheses to select which one reflects their intention if any. The English explanations of SQL queries in TURING are produced by our high-precision natural language generation system based on synchronous grammars.

pdf bib
A Globally Normalized Neural Model for Semantic Parsing
Chenyang Huang | Wei Yang | Yanshuai Cao | Osmar Zaïane | Lili Mou
Proceedings of the 5th Workshop on Structured Prediction for NLP (SPNLP 2021)

In this paper, we propose a globally normalized model for context-free grammar (CFG)-based semantic parsing. Instead of predicting a probability, our model predicts a real-valued score at each step and does not suffer from the label bias problem. Experiments show that our approach outperforms locally normalized models on small datasets, but it does not yield improvement on a large dataset.

2019

pdf bib
A Cross-Domain Transferable Neural Coherence Model
Peng Xu | Hamidreza Saghir | Jin Sung Kang | Teng Long | Avishek Joey Bose | Yanshuai Cao | Jackie Chi Kit Cheung
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Coherence is an important aspect of text quality and is crucial for ensuring its readability. One important limitation of existing coherence models is that training on one domain does not easily generalize to unseen categories of text. Previous work advocates for generative models for cross-domain generalization, because for discriminative models, the space of incoherent sentence orderings to discriminate against during training is prohibitively large. In this work, we propose a local discriminative neural model with a much smaller negative sampling space that can efficiently learn against incorrect orderings. The proposed coherence model is simple in structure, yet it significantly outperforms previous state-of-art methods on a standard benchmark dataset on the Wall Street Journal corpus, as well as in multiple new challenging settings of transfer to unseen categories of discourse on Wikipedia articles.

2018

pdf bib
Adversarial Contrastive Estimation
Avishek Joey Bose | Huan Ling | Yanshuai Cao
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Learning by contrasting positive and negative samples is a general strategy adopted by many methods. Noise contrastive estimation (NCE) for word embeddings and translating embeddings for knowledge graphs are examples in NLP employing this approach. In this work, we view contrastive learning as an abstraction of all such methods and augment the negative sampler into a mixture distribution containing an adversarially learned sampler. The resulting adaptive sampler finds harder negative examples, which forces the main model to learn a better representation of the data. We evaluate our proposal on learning word embeddings, order embeddings and knowledge graph embeddings and observe both faster convergence and improved results on multiple metrics.