Yashal Shakti Kanungo


pdf bib
Ad Headline Generation using Self-Critical Masked Language Model
Yashal Shakti Kanungo | Sumit Negi | Aruna Rajan
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Papers

For any E-commerce website it is a nontrivial problem to build enduring advertisements that attract shoppers. It is hard to pass the creative quality bar of the website, especially at a large scale. We thus propose a programmatic solution to generate product advertising headlines using retail content. We propose a state of the art application of Reinforcement Learning (RL) Policy gradient methods on Transformer (Vaswani et al., 2017) based Masked Language Models (Devlin et al., 2019). Our method creates the advertising headline by jointly conditioning on multiple products that a seller wishes to advertise. We demonstrate that our method outperforms existing Transformer and LSTM + RL methods in overlap metrics and quality audits. We also show that our model generated headlines outperform human submitted headlines in terms of both grammar and creative quality as determined by audits.