Yasuyo Sawaki


2022

pdf bib
Automating Idea Unit Segmentation and Alignment for Assessing Reading Comprehension via Summary Protocol Analysis
Marcello Gecchele | Hiroaki Yamada | Takenobu Tokunaga | Yasuyo Sawaki | Mika Ishizuka
Proceedings of the Thirteenth Language Resources and Evaluation Conference

In this paper, we approach summary evaluation from an applied linguistics (AL) point of view. We provide computational tools to AL researchers to simplify the process of Idea Unit (IU) segmentation. The IU is a segmentation unit that can identify chunks of information. These chunks can be compared across documents to measure the content overlap between a summary and its source text. We propose a full revision of the annotation guidelines to allow machine implementation. The new guideline also improves the inter-annotator agreement, rising from 0.547 to 0.785 (Cohen’s Kappa). We release L2WS 2021, a IU gold standard corpus composed of 40 manually annotated student summaries. We propose IUExtract; i.e. the first automatic segmentation algorithm based on the IU. The algorithm was tested over the L2WS 2021 corpus. Our results are promising, achieving a precision of 0.789 and a recall of 0.844. We tested an existing approach to IU alignment via word embeddings with the state of the art model SBERT. The recorded precision for the top 1 aligned pair of IUs was 0.375. We deemed this result insufficient for effective automatic alignment. We propose “SAT”, an online tool to facilitate the collection of alignment gold standards for future training.

2019

pdf bib
Supporting content evaluation of student summaries by Idea Unit embedding
Marcello Gecchele | Hiroaki Yamada | Takenobu Tokunaga | Yasuyo Sawaki
Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications

This paper discusses the computer-assisted content evaluation of summaries. We propose a method to make a correspondence between the segments of the source text and its summary. As a unit of the segment, we adopt “Idea Unit (IU)” which is proposed in Applied Linguistics. Introducing IUs enables us to make a correspondence even for the sentences that contain multiple ideas. The IU correspondence is made based on the similarity between vector representations of IU. An evaluation experiment with two source texts and 20 summaries showed that the proposed method is more robust against rephrased expressions than the conventional ROUGE-based baselines. Also, the proposed method outperformed the baselines in recall. We im-plemented the proposed method in a GUI tool“Segment Matcher” that aids teachers to estab-lish a link between corresponding IUs acrossthe summary and source text.

2002

pdf bib
A Reliable Approach to Automatic Assessment of Short Answer Free Responses
Lyle F. Bachman | Nathan Carr | Greg Kamei | Mikyung Kim | Michael J. Pan | Chris Salvador | Yasuyo Sawaki
COLING 2002: The 17th International Conference on Computational Linguistics: Project Notes