Ye Wang


pdf bib
Enhancing Dual-Encoders with Question and Answer Cross-Embeddings for Answer Retrieval
Yanmeng Wang | Jun Bai | Ye Wang | Jianfei Zhang | Wenge Rong | Zongcheng Ji | Shaojun Wang | Jing Xiao
Findings of the Association for Computational Linguistics: EMNLP 2021

Dual-Encoders is a promising mechanism for answer retrieval in question answering (QA) systems. Currently most conventional Dual-Encoders learn the semantic representations of questions and answers merely through matching score. Researchers proposed to introduce the QA interaction features in scoring function but at the cost of low efficiency in inference stage. To keep independent encoding of questions and answers during inference stage, variational auto-encoder is further introduced to reconstruct answers (questions) from question (answer) embeddings as an auxiliary task to enhance QA interaction in representation learning in training stage. However, the needs of text generation and answer retrieval are different, which leads to hardness in training. In this work, we propose a framework to enhance the Dual-Encoders model with question answer cross-embeddings and a novel Geometry Alignment Mechanism (GAM) to align the geometry of embeddings from Dual-Encoders with that from Cross-Encoders. Extensive experimental results show that our framework significantly improves Dual-Encoders model and outperforms the state-of-the-art method on multiple answer retrieval datasets.

pdf bib
PINGAN Omini-Sinitic at SemEval-2021 Task 4:Reading Comprehension of Abstract Meaning
Ye Wang | Yanmeng Wang | Haijun Zhu | Bo Zeng | Zhenghong Hao | Shaojun Wang | Jing Xiao
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper describes the winning system for subtask 2 and the second-placed system for subtask 1 in SemEval 2021 Task 4: ReadingComprehension of Abstract Meaning. We propose to use pre-trianed Electra discriminator to choose the best abstract word from five candidates. An upper attention and auto denoising mechanism is introduced to process the long sequences. The experiment results demonstrate that this contribution greatly facilitatesthe contextual language modeling in reading comprehension task. The ablation study is also conducted to show the validity of our proposed methods.