Yejin Bang


pdf bib
XPersona: Evaluating Multilingual Personalized Chatbot
Zhaojiang Lin | Zihan Liu | Genta Indra Winata | Samuel Cahyawijaya | Andrea Madotto | Yejin Bang | Etsuko Ishii | Pascale Fung
Proceedings of the 3rd Workshop on Natural Language Processing for Conversational AI

Personalized dialogue systems are an essential step toward better human-machine interaction. Existing personalized dialogue agents rely on properly designed conversational datasets, which are mostly monolingual (e.g., English), which greatly limits the usage of conversational agents in other languages. In this paper, we propose a multi-lingual extension of Persona-Chat, namely XPersona. Our dataset includes persona conversations in six different languages other than English for evaluating multilingual personalized agents. We experiment with both multilingual and cross-lingual trained baselines and evaluate them against monolingual and translation-pipeline models using both automatic and human evaluation. Experimental results show that the multilingual trained models outperform the translation pipeline and that they are on par with the monolingual models, with the advantage of having a single model across multiple languages. On the other hand, the state-of-the-art cross-lingual trained models achieve inferior performance to the other models, showing that cross-lingual conversation modeling is a challenging task. We hope that our dataset and baselines will accelerate research in multilingual dialogue systems.

pdf bib
Assessing Political Prudence of Open-domain Chatbots
Yejin Bang | Nayeon Lee | Etsuko Ishii | Andrea Madotto | Pascale Fung
Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue

Politically sensitive topics are still a challenge for open-domain chatbots. However, dealing with politically sensitive content in a responsible, non-partisan, and safe behavior way is integral for these chatbots. Currently, the main approach to handling political sensitivity is by simply changing such a topic when it is detected. This is safe but evasive and results in a chatbot that is less engaging. In this work, as a first step towards a politically safe chatbot, we propose a group of metrics for assessing their political prudence. We then conduct political prudence analysis of various chatbots and discuss their behavior from multiple angles through our automatic metric and human evaluation metrics. The testsets and codebase are released to promote research in this area.

pdf bib
Towards Few-shot Fact-Checking via Perplexity
Nayeon Lee | Yejin Bang | Andrea Madotto | Pascale Fung
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Few-shot learning has drawn researchers’ attention to overcome the problem of data scarcity. Recently, large pre-trained language models have shown great performance in few-shot learning for various downstream tasks, such as question answering and machine translation. Nevertheless, little exploration has been made to achieve few-shot learning for the fact-checking task. However, fact-checking is an important problem, especially when the amount of information online is growing exponentially every day. In this paper, we propose a new way of utilizing the powerful transfer learning ability of a language model via a perplexity score. The most notable strength of our methodology lies in its capability in few-shot learning. With only two training samples, our methodology can already outperform the Major Class baseline by more than an absolute 10% on the F1-Macro metric across multiple datasets. Through experiments, we empirically verify the plausibility of the rather surprising usage of the perplexity score in the context of fact-checking and highlight the strength of our few-shot methodology by comparing it to strong fine-tuning-based baseline models. Moreover, we construct and publicly release two new fact-checking datasets related to COVID-19.


Understanding the Shades of Sexism in Popular TV Series
Nayeon Lee | Yejin Bang | Jamin Shin | Pascale Fung
Proceedings of the 2019 Workshop on Widening NLP

[Multiple-submission] In the midst of a generation widely exposed to and influenced by media entertainment, the NLP research community has shown relatively little attention on the sexist comments in popular TV series. To understand sexism in TV series, we propose a way of collecting distant supervision dataset using Character Persona information with the psychological theories on sexism. We assume that sexist characters from TV shows are more prone to making sexist comments when talking about women, and show that this hypothesis is valid through experiment. Finally, we conduct an interesting analysis on popular TV show characters and successfully identify different shades of sexism that is often overlooked.