Yen-Chun Chen


2021

pdf bib
LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval
Siqi Sun | Yen-Chun Chen | Linjie Li | Shuohang Wang | Yuwei Fang | Jingjing Liu
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Multimodal pre-training has propelled great advancement in vision-and-language research. These large-scale pre-trained models, although successful, fatefully suffer from slow inference speed due to enormous computational cost mainly from cross-modal attention in Transformer architecture. When applied to real-life applications, such latency and computation demand severely deter the practical use of pre-trained models. In this paper, we study Image-text retrieval (ITR), the most mature scenario of V+L application, which has been widely studied even prior to the emergence of recent pre-trained models. We propose a simple yet highly effective approach, LightningDOT that accelerates the inference time of ITR by thousands of times, without sacrificing accuracy. LightningDOT removes the time-consuming cross-modal attention by extracting pre-cached feature indexes offline, and employing instant dot-product matching online, which significantly speeds up retrieval process. In fact, our LightningDOT achieves superior performance across mainstream ITR benchmarks such as Flickr30k and COCO datasets, outperforming existing pre-trained models that consume 1000 times magnitude of computational hours using the same features.

pdf bib
Cluster-Former: Clustering-based Sparse Transformer for Question Answering
Shuohang Wang | Luowei Zhou | Zhe Gan | Yen-Chun Chen | Yuwei Fang | Siqi Sun | Yu Cheng | Jingjing Liu
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2020

pdf bib
HERO: Hierarchical Encoder for Video+Language Omni-representation Pre-training
Linjie Li | Yen-Chun Chen | Yu Cheng | Zhe Gan | Licheng Yu | Jingjing Liu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We present HERO, a novel framework for large-scale video+language omni-representation learning. HERO encodes multimodal inputs in a hierarchical structure, where local context of a video frame is captured by a Cross-modal Transformer via multimodal fusion, and global video context is captured by a Temporal Transformer. In addition to standard Masked Language Modeling (MLM) and Masked Frame Modeling (MFM) objectives, we design two new pre-training tasks: (i) Video-Subtitle Matching (VSM), where the model predicts both global and local temporal alignment; and (ii) Frame Order Modeling (FOM), where the model predicts the right order of shuffled video frames. HERO is jointly trained on HowTo100M and large-scale TV datasets to gain deep understanding of complex social dynamics with multi-character interactions. Comprehensive experiments demonstrate that HERO achieves new state of the art on multiple benchmarks over Text-based Video/Video-moment Retrieval, Video Question Answering (QA), Video-and-language Inference and Video Captioning tasks across different domains. We also introduce two new challenging benchmarks How2QA and How2R for Video QA and Retrieval, collected from diverse video content over multimodalities.

pdf bib
Distilling Knowledge Learned in BERT for Text Generation
Yen-Chun Chen | Zhe Gan | Yu Cheng | Jingzhou Liu | Jingjing Liu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Large-scale pre-trained language model such as BERT has achieved great success in language understanding tasks. However, it remains an open question how to utilize BERT for language generation. In this paper, we present a novel approach, Conditional Masked Language Modeling (C-MLM), to enable the finetuning of BERT on target generation tasks. The finetuned BERT (teacher) is exploited as extra supervision to improve conventional Seq2Seq models (student) for better text generation performance. By leveraging BERT’s idiosyncratic bidirectional nature, distilling knowledge learned in BERT can encourage auto-regressive Seq2Seq models to plan ahead, imposing global sequence-level supervision for coherent text generation. Experiments show that the proposed approach significantly outperforms strong Transformer baselines on multiple language generation tasks such as machine translation and text summarization. Our proposed model also achieves new state of the art on IWSLT German-English and English-Vietnamese MT datasets.

pdf bib
DIALOGPT : Large-Scale Generative Pre-training for Conversational Response Generation
Yizhe Zhang | Siqi Sun | Michel Galley | Yen-Chun Chen | Chris Brockett | Xiang Gao | Jianfeng Gao | Jingjing Liu | Bill Dolan
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

We present a large, tunable neural conversational response generation model, DIALOGPT (dialogue generative pre-trained transformer). Trained on 147M conversation-like exchanges extracted from Reddit comment chains over a period spanning from 2005 through 2017, DialoGPT extends the Hugging Face PyTorch transformer to attain a performance close to human both in terms of automatic and human evaluation in single-turn dialogue settings. We show that conversational systems that leverage DialoGPT generate more relevant, contentful and context-consistent responses than strong baseline systems. The pre-trained model and training pipeline are publicly released to facilitate research into neural response generation and the development of more intelligent open-domain dialogue systems.

2019

pdf bib
Explore, Propose, and Assemble: An Interpretable Model for Multi-Hop Reading Comprehension
Yichen Jiang | Nitish Joshi | Yen-Chun Chen | Mohit Bansal
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Multi-hop reading comprehension requires the model to explore and connect relevant information from multiple sentences/documents in order to answer the question about the context. To achieve this, we propose an interpretable 3-module system called Explore-Propose-Assemble reader (EPAr). First, the Document Explorer iteratively selects relevant documents and represents divergent reasoning chains in a tree structure so as to allow assimilating information from all chains. The Answer Proposer then proposes an answer from every root-to-leaf path in the reasoning tree. Finally, the Evidence Assembler extracts a key sentence containing the proposed answer from every path and combines them to predict the final answer. Intuitively, EPAr approximates the coarse-to-fine-grained comprehension behavior of human readers when facing multiple long documents. We jointly optimize our 3 modules by minimizing the sum of losses from each stage conditioned on the previous stage’s output. On two multi-hop reading comprehension datasets WikiHop and MedHop, our EPAr model achieves significant improvements over the baseline and competitive results compared to the state-of-the-art model. We also present multiple reasoning-chain-recovery tests and ablation studies to demonstrate our system’s ability to perform interpretable and accurate reasoning.

2018

pdf bib
Fast Abstractive Summarization with Reinforce-Selected Sentence Rewriting
Yen-Chun Chen | Mohit Bansal
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Inspired by how humans summarize long documents, we propose an accurate and fast summarization model that first selects salient sentences and then rewrites them abstractively (i.e., compresses and paraphrases) to generate a concise overall summary. We use a novel sentence-level policy gradient method to bridge the non-differentiable computation between these two neural networks in a hierarchical way, while maintaining language fluency. Empirically, we achieve the new state-of-the-art on all metrics (including human evaluation) on the CNN/Daily Mail dataset, as well as significantly higher abstractiveness scores. Moreover, by first operating at the sentence-level and then the word-level, we enable parallel decoding of our neural generative model that results in substantially faster (10-20x) inference speed as well as 4x faster training convergence than previous long-paragraph encoder-decoder models. We also demonstrate the generalization of our model on the test-only DUC-2002 dataset, where we achieve higher scores than a state-of-the-art model.