Yevgeniy Vorobeychik
2024
RLHFPoison: Reward Poisoning Attack for Reinforcement Learning with Human Feedback in Large Language Models
Jiongxiao Wang
|
Junlin Wu
|
Muhao Chen
|
Yevgeniy Vorobeychik
|
Chaowei Xiao
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Reinforcement Learning with Human Feedback (RLHF) is a methodology designed to align Large Language Models (LLMs) with human preferences, playing an important role in LLMs alignment. Despite its advantages, RLHF relies on human annotators to rank the text, which can introduce potential security vulnerabilities if any adversarial annotator (i.e., attackers) manipulates the ranking score by up-ranking any malicious text to steer the LLM adversarially. To assess the red-teaming of RLHF against human preference data poisoning, we propose RankPoison, a poisoning attack method on candidates’ selection of preference rank flipping to reach certain malicious behaviors (e.g., generating longer sequences, which can increase the computational cost). With poisoned dataset generated by RankPoison, we can perform poisoning attacks on LLMs to generate longer tokens without hurting the original safety alignment performance. Moreover, applying RankPoison, we also successfully implement a backdoor attack where LLMs can generate longer answers under questions with the trigger word. Our findings highlight critical security challenges in RLHF, underscoring the necessity for more robust alignment methods for LLMs.
2019
A Semantic Cover Approach for Topic Modeling
Rajagopal Venkatesaramani
|
Doug Downey
|
Bradley Malin
|
Yevgeniy Vorobeychik
Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM 2019)
We introduce a novel topic modeling approach based on constructing a semantic set cover for clusters of similar documents. Specifically, our approach first clusters documents using their Tf-Idf representation, and then covers each cluster with a set of topic words based on semantic similarity, defined in terms of a word embedding. Computing a topic cover amounts to solving a minimum set cover problem. Our evaluation compares our topic modeling approach to Latent Dirichlet Allocation (LDA) on three metrics: 1) qualitative topic match, measured using evaluations by Amazon Mechanical Turk (MTurk) workers, 2) performance on classification tasks using each topic model as a sparse feature representation, and 3) topic coherence. We find that qualitative judgments significantly favor our approach, the method outperforms LDA on topic coherence, and is comparable to LDA on document classification tasks.
Search
Fix data
Co-authors
- Muhao Chen 1
- Doug Downey 1
- Bradley Malin 1
- Rajagopal Venkatesaramani 1
- Jiongxiao Wang 1
- show all...