Yi Chen


pdf bib
Learning from Sibling Mentions with Scalable Graph Inference in Fine-Grained Entity Typing
Yi Chen | Jiayang Cheng | Haiyun Jiang | Lemao Liu | Haisong Zhang | Shuming Shi | Ruifeng Xu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper, we firstly empirically find that existing models struggle to handle hard mentions due to their insufficient contexts, which consequently limits their overall typing performance. To this end, we propose to exploit sibling mentions for enhancing the mention representations.Specifically, we present two different metrics for sibling selection and employ an attentive graph neural network to aggregate information from sibling mentions. The proposed graph model is scalable in that unseen test mentions are allowed to be added as new nodes for inference.Exhaustive experiments demonstrate the effectiveness of our sibling learning strategy, where our model outperforms ten strong baselines. Moreover, our experiments indeed prove the superiority of sibling mentions in helping clarify the types for hard mentions.


pdf bib
An Empirical Study on Multiple Information Sources for Zero-Shot Fine-Grained Entity Typing
Yi Chen | Haiyun Jiang | Lemao Liu | Shuming Shi | Chuang Fan | Min Yang | Ruifeng Xu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Auxiliary information from multiple sources has been demonstrated to be effective in zero-shot fine-grained entity typing (ZFET). However, there lacks a comprehensive understanding about how to make better use of the existing information sources and how they affect the performance of ZFET. In this paper, we empirically study three kinds of auxiliary information: context consistency, type hierarchy and background knowledge (e.g., prototypes and descriptions) of types, and propose a multi-source fusion model (MSF) targeting these sources. The performance obtains up to 11.42% and 22.84% absolute gains over state-of-the-art baselines on BBN and Wiki respectively with regard to macro F1 scores. More importantly, we further discuss the characteristics, merits and demerits of each information source and provide an intuitive understanding of the complementarity among them.


pdf bib
结合金融领域情感词典和注意力机制的细粒度情感分析(Attention-based Recurrent Network Combined with Financial Lexicon for Aspect-level Sentiment Classification)
Qinglin Zhu (祝清麟) | Bin Liang (梁斌) | Liuyu Han (刘宇瀚) | Yi Chen (陈奕) | Ruifeng Xu (徐睿峰) | Ruibin Mao (毛瑞彬)
Proceedings of the 19th Chinese National Conference on Computational Linguistics



pdf bib
Reranking Answers for Definitional QA Using Language Modeling
Yi Chen | Ming Zhou | Shilong Wang
Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics