Yi Feng


pdf bib
A Survey on Recent Advances in Keyphrase Extraction from Pre-trained Language Models
Mingyang Song | Yi Feng | Liping Jing
Findings of the Association for Computational Linguistics: EACL 2023

Keyphrase Extraction (KE) is a critical component in Natural Language Processing (NLP) systems for selecting a set of phrases from the document that could summarize the important information discussed in the document. Typically, a keyphrase extraction system can significantly accelerate the speed of information retrieval and help people get first-hand information from a long document quickly and accurately. Specifically, keyphrases are capable of providing semantic metadata characterizing documents and producing an overview of the content of a document. In this paper, we introduce keyphrase extraction, present a review of the recent studies based on pre-trained language models, offer interesting insights on the different approaches, highlight open issues, and give a comparative experimental study of popular supervised as well as unsupervised techniques on several datasets. To encourage more instantiations, we release the related files mentioned in this paper.

pdf bib
Improving Embedding-based Unsupervised Keyphrase Extraction by Incorporating Structural Information
Mingyang Song | Huafeng Liu | Yi Feng | Liping Jing
Findings of the Association for Computational Linguistics: ACL 2023

Keyphrase extraction aims to extract a set of phrases with the central idea of the source document. In a structured document, there are certain locations (e.g., the title or the first sentence) where a keyphrase is most likely to appear. However, when extracting keyphrases from the document, most existing embedding-based unsupervised keyphrase extraction models ignore the indicative role of the highlights in certain locations, leading to wrong keyphrases extraction. In this paper, we propose a new Highlight-Guided Unsupervised Keyphrase Extraction model (HGUKE) to address the above issue. Specifically, HGUKE first models the phrase-document relevance via the highlights of the documents. Next, HGUKE calculates the cross-phrase relevance between all candidate phrases. Finally, HGUKE aggregates the above two relevance as the importance score of each candidate phrase to rank and extract keyphrases. The experimental results on three benchmarks demonstrate that HGUKE outperforms the state-of-the-art unsupervised keyphrase extraction baselines.

pdf bib
Mitigating Over-Generation for Unsupervised Keyphrase Extraction with Heterogeneous Centrality Detection
Mingyang Song | Pengyu Xu | Yi Feng | Huafeng Liu | Liping Jing
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Over-generation errors occur when a keyphrase extraction model correctly determines a candidate keyphrase as a keyphrase because it contains a word that frequently appears in the document but at the same time erroneously outputs other candidates as keyphrases because they contain the same word. To mitigate this issue, we propose a new heterogeneous centrality detection approach (CentralityRank), which extracts keyphrases by simultaneously identifying both implicit and explicit centrality within a heterogeneous graph as the importance score of each candidate. More specifically, CentralityRank detects centrality by taking full advantage of the content within the input document to construct graphs that encompass semantic nodes of varying granularity levels, not limited to just phrases. These additional nodes act as intermediaries between candidate keyphrases, enhancing cross-phrase relations. Furthermore, we introduce a novel adaptive boundary-aware regularization that can leverage the position information of candidate keyphrases, thus influencing the importance of candidate keyphrases. Extensive experimental results demonstrate the superiority of CentralityRank over recent state-of-the-art unsupervised keyphrase extraction baselines across three benchmark datasets.


pdf bib
Legal Judgment Prediction via Event Extraction with Constraints
Yi Feng | Chuanyi Li | Vincent Ng
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

While significant progress has been made on the task of Legal Judgment Prediction (LJP) in recent years, the incorrect predictions made by SOTA LJP models can be attributed in part to their failure to (1) locate the key event information that determines the judgment, and (2) exploit the cross-task consistency constraints that exist among the subtasks of LJP. To address these weaknesses, we propose EPM, an Event-based Prediction Model with constraints, which surpasses existing SOTA models in performance on a standard LJP dataset.

pdf bib
Hyperbolic Relevance Matching for Neural Keyphrase Extraction
Mingyang Song | Yi Feng | Liping Jing
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Keyphrase extraction is a fundamental task in natural language processing that aims to extract a set of phrases with important information from a source document. Identifying important keyphrases is the central component of keyphrase extraction, and its main challenge is learning to represent information comprehensively and discriminate importance accurately. In this paper, to address the above issues, we design a new hyperbolic matching model (HyperMatch) to explore keyphrase extraction in hyperbolic space. Concretely, to represent information comprehensively, HyperMatch first takes advantage of the hidden representations in the middle layers of RoBERTa and integrates them as the word embeddings via an adaptive mixing layer to capture the hierarchical syntactic and semantic structures. Then, considering the latent structure information hidden in natural languages, HyperMatch embeds candidate phrases and documents in the same hyperbolic space via a hyperbolic phrase encoder and a hyperbolic document encoder. To discriminate importance accurately, HyperMatch estimates the importance of each candidate phrase by explicitly modeling the phrase-document relevance via the Poincaré distance and optimizes the whole model by minimizing the hyperbolic margin-based triplet loss. Extensive experiments are conducted on six benchmark datasets and demonstrate that HyperMatch outperforms the recent state-of-the-art baselines.

pdf bib
Utilizing BERT Intermediate Layers for Unsupervised Keyphrase Extraction
Mingyang Song | Yi Feng | Liping Jing
Proceedings of the 5th International Conference on Natural Language and Speech Processing (ICNLSP 2022)


pdf bib
Don’t Miss the Potential Customers! Retrieving Similar Ads to Improve User Targeting
Yi Feng | Ting Wang | Chuanyi Li | Vincent Ng | Jidong Ge | Bin Luo | Yucheng Hu | Xiaopeng Zhang
Findings of the Association for Computational Linguistics: EMNLP 2021

User targeting is an essential task in the modern advertising industry: given a package of ads for a particular category of products (e.g., green tea), identify the online users to whom the ad package should be targeted. A (ad package specific) user targeting model is typically trained using historical clickthrough data: positive instances correspond to users who have clicked on an ad in the package before, whereas negative instances correspond to users who have not clicked on any ads in the package that were displayed to them. Collecting a sufficient amount of positive training data for training an accurate user targeting model, however, is by no means trivial. This paper focuses on the development of a method for automatic augmentation of the set of positive training instances. Experimental results on two datasets, including a real-world company dataset, demonstrate the effectiveness of our proposed method.