Yi Gu


2024

pdf bib
Text Grafting: Near-Distribution Weak Supervision for Minority Classes in Text Classification
Letian Peng | Yi Gu | Chengyu Dong | Zihan Wang | Jingbo Shang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

For extremely weak-supervised text classification, pioneer research generates pseudo labels by mining texts similar to the class names from the raw corpus, which may end up with very limited or even no samples for the minority classes. Recent works have started to generate the relevant texts by prompting LLMs using the class names or definitions; however, there is a high risk that LLMs cannot generate in-distribution (i.e., similar to the corpus where the text classifier will be applied) data, leading to ungeneralizable classifiers. In this paper, we combine the advantages of these two approaches and propose to bridge the gap via a novel framework, text grafting, which aims to obtain clean and near-distribution weak supervision for minority classes. Specifically, we first use LLM-based logits to mine masked templates from the raw corpus, which have a high potential for data synthesis into the target minority class. Then, the templates are filled by state-of-the-art LLMs to synthesize near-distribution texts falling into minority classes. Text grafting shows significant improvement over direct mining or synthesis on minority classes. We also use analysis and case studies to comprehend the property of text grafting.

2023

pdf bib
JECC: Commonsense Reasoning Tasks Derived from Interactive Fictions
Mo Yu | Yi Gu | Xiaoxiao Guo | Yufei Feng | Xiaodan Zhu | Michael Greenspan | Murray Campbell | Chuang Gan
Findings of the Association for Computational Linguistics: ACL 2023

Commonsense reasoning simulates the human ability to make presumptions about our physical world, and it is an essential cornerstone in building general AI systems. We proposea new commonsense reasoning dataset based on human’s Interactive Fiction (IF) gameplaywalkthroughs as human players demonstrate plentiful and diverse commonsense reasoning. The new dataset provides a natural mixture of various reasoning types and requires multi-hopreasoning. Moreover, the IF game-based construction procedure requires much less humaninterventions than previous ones. Different from existing benchmarks, our dataset focuseson the assessment of functional commonsense knowledge rules rather than factual knowledge. Hence, in order to achieve higher performance on our tasks, models need to effectively uti-lize such functional knowledge to infer the outcomes of actions, rather than relying solely onmemorizing facts. Experiments show that the introduced dataset is challenging to previousmachine reading models as well as the new large language models with a significant 20%performance gap compared to human experts.

pdf bib
Reasoning with Language Model is Planning with World Model
Shibo Hao | Yi Gu | Haodi Ma | Joshua Hong | Zhen Wang | Daisy Wang | Zhiting Hu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) have shown remarkable reasoning capabilities, particularly with Chain-of-Thought-style prompts. However, LLMs can still struggle with problems that are easy for humans, such as generating action plans for executing tasks or performing complex math or logical reasoning. This is due to LLMs’ absence of an internal world model for predicting world states (e.g., environment status, variable values) and simulating long-term action outcomes of actions. This prevents LLMs from performing deliberate planning akin to human brains, which involves exploring alternative reasoning paths, anticipating future states and rewards, and iteratively refining existing reasoning steps. To overcome the limitations, we propose a new LLM reasoning framework, Reasoning via Planning (RAP). RAP repurposes the LLM as both a world model and a reasoning agent, and incorporates a principled planning algorithm (based on Monte Carlo Tree Search) for strategic exploration in the vast reasoning space. During reasoning, the LLM (as agent) incrementally builds a reasoning tree under the guidance of the LLM (as world model) and task-specific rewards, properly balancing exploration v.s. exploitation to achieve a high-reward reasoning path efficiently. We apply RAP to a variety of challenging reasoning problems, such as plan generation, math reasoning, and logical inference. Empirical results demonstrate the superiority of RAP over various strong baselines, including CoT and least-to-most prompting with self-consistency, e.g., RAP on LLaMA-33B surpasses CoT on GPT-4 with 33% relative improvement in plan generation.

2022

pdf bib
Revisiting the Roles of “Text” in Text Games
Yi Gu | Shunyu Yao | Chuang Gan | Josh Tenenbaum | Mo Yu
Findings of the Association for Computational Linguistics: EMNLP 2022

Text games present opportunities for natural language understanding (NLU) methods to tackle reinforcement learning (RL) challenges. However, recent work has questioned the necessity of NLU by showing random text hashes could perform decently. In this paper, we pursue a fine-grained investigation into the roles of text in the face of different RL challenges, and reconcile that semantic and non-semantic language representations could be complementary rather than contrasting. Concretely, we propose a simple scheme to extract relevant contextual information into an approximate state hash as extra input for an RNN-based text agent. Such a lightweight plug-in achieves competitive performance with state-of-the-art text agents using advanced NLU techniques such as knowledge graph and passage retrieval, suggesting non-NLU methods might suffice to tackle the challenge of partial observability. However, if we remove RNN encoders and use approximate or even ground-truth state hash alone, the model performs miserably, which confirms the importance of semantic function approximation to tackle the challenge of combinatorially large observation and action spaces. Our findings and analysis provide new insights for designing better text game task setups and agents.