Yi Han
2024
Definition Generation for Automatically Induced Semantic Frame
Yi Han
|
Ryohei Sasano
|
Koichi Takeda
Findings of the Association for Computational Linguistics ACL 2024
In a semantic frame resource such as FrameNet, the definition sentence of a frame is essential for humans to understand the meaning of the frame intuitively. Recently, several attempts have been made to induce semantic frames from large corpora, but the cost of creating the definition sentences for such frames is significant. In this paper, we address a new task of generating frame definitions from a set of frame-evoking words. Specifically, given a cluster of frame-evoking words and associated exemplars induced as the same semantic frame, we utilize a large language model to generate frame definitions. We demonstrate that incorporating frame element reasoning as chain-of-thought can enhance the inclusion of correct frame elements in the generated definitions.
2023
Learning Joint Structural and Temporal Contextualized Knowledge Embeddings for Temporal Knowledge Graph Completion
Yifu Gao
|
Yongquan He
|
Zhigang Kan
|
Yi Han
|
Linbo Qiao
|
Dongsheng Li
Findings of the Association for Computational Linguistics: ACL 2023
Temporal knowledge graph completion that predicts missing links for incomplete temporal knowledge graphs (TKG) is gaining increasing attention. Most existing works have achieved good results by incorporating time information into static knowledge graph embedding methods. However, they ignore the contextual nature of the TKG structure, i.e., query-specific subgraph contains both structural and temporal neighboring facts. This paper presents the SToKE, a novel method that employs the pre-trained language model (PLM) to learn joint Structural and Temporal Contextualized Knowledge Embeddings.Specifically, we first construct an event evolution tree (EET) for each query to enable PLMs to handle the TKG, which can be seen as a structured event sequence recording query-relevant structural and temporal contexts. We then propose a novel temporal embedding and structural matrix to learn the time information and structural dependencies of facts in EET.Finally, we formulate TKG completion as a mask prediction problem by masking the missing entity of the query to fine-tune pre-trained language models. Experimental results on three widely used datasets show the superiority of our model.
2022
Automating Interlingual Homograph Recognition with Parallel Sentences
Yi Han
|
Ryohei Sasano
|
Koichi Takeda
Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022
Interlingual homographs are words that spell the same but possess different meanings across languages. Recognizing interlingual homographs from form-identical words generally needs linguistic knowledge and massive annotation work. In this paper, we propose an automatic interlingual homograph recognition method based on the cross-lingual word embedding similarity and co-occurrence of form-identical words in parallel sentences. We conduct experiments with various off-the-shelf language models coordinating with cross-lingual alignment operations and co-occurrence metrics on the Chinese-Japanese and English-Dutch language pairs. Experimental results demonstrate that our proposed method is able to make accurate and consistent predictions across languages.
Search
Co-authors
- Ryohei Sasano 2
- Koichi Takeda 2
- Yifu Gao 1
- Yongquan He 1
- Zhigang Kan 1
- show all...