Yi Xu


pdf bib
EPiDA: An Easy Plug-in Data Augmentation Framework for High Performance Text Classification
Minyi Zhao | Lu Zhang | Yi Xu | Jiandong Ding | Jihong Guan | Shuigeng Zhou
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent works have empirically shown the effectiveness of data augmentation (DA) in NLP tasks, especially for those suffering from data scarcity. Intuitively, given the size of generated data, their diversity and quality are crucial to the performance of targeted tasks. However, to the best of our knowledge, most existing methods consider only either the diversity or the quality of augmented data, thus cannot fully mine the potential of DA for NLP. In this paper, we present an easy and plug-in data augmentation framework EPiDA to support effective text classification. EPiDA employs two mechanisms: relative entropy maximization (REM) and conditional entropy minimization (CEM) to control data generation, where REM is designed to enhance the diversity of augmented data while CEM is exploited to ensure their semantic consistency. EPiDA can support efficient and continuous data generation for effective classifier training. Extensive experiments show that EPiDA outperforms existing SOTA methods in most cases, though not using any agent networks or pre-trained generation networks, and it works well with various DA algorithms and classification models.

pdf bib
Asynchronous Convergence in Multi-Task Learning via Knowledge Distillation from Converged Tasks
Weiyi Lu | Sunny Rajagopalan | Priyanka Nigam | Jaspreet Singh | Xiaodi Sun | Yi Xu | Belinda Zeng | Trishul Chilimbi
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track

Multi-task learning (MTL) aims to solve multiple tasks jointly by sharing a base representation among them. This can lead to more efficient learning and better generalization, as compared to learning each task individually. However, one issue that often arises in MTL is the convergence speed between tasks varies due to differences in task difficulty, so it can be a challenge to simultaneously achieve the best performance on all tasks with a single model checkpoint. Various techniques have been proposed to address discrepancies in task convergence rate, including weighting the per-task losses and modifying task gradients. In this work, we propose a novel approach that avoids the problem of requiring all tasks to converge at the same rate, but rather allows for “asynchronous” convergence among the tasks where each task can converge on its own schedule. As our main contribution, we monitor per-task validation metrics and switch to a knowledge distillation loss once a task has converged instead of continuing to train on the true labels. This prevents the model from overfitting on converged tasks while it learns the remaining tasks. We evaluate the proposed method in two 5-task MTL setups consisting of internal e-commerce datasets. The results show that our method consistently outperforms existing loss weighting and gradient balancing approaches, achieving average improvements of 0.9% and 1.5% over the best performing baseline model in the two setups, respectively.

pdf bib
DynaMaR: Dynamic Prompt with Mask Token Representation
Xiaodi Sun | Sunny Rajagopalan | Priyanka Nigam | Weiyi Lu | Yi Xu | Iman Keivanloo | Belinda Zeng | Trishul Chilimbi
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track

Recent research has shown that large language models pretrained using unsupervised approaches can achieve significant performance improvement on many downstream tasks. Typically when adapting these language models to downstream tasks, like a classification or regression task, we employ a fine-tuning paradigm in which the sentence representation from the language model is input to a task-specific head; the model is then fine-tuned end-to-end. However, with the emergence of models like GPT-3, prompt-based fine-tuning has been proven to be a successful approach for few-shot tasks. Inspired by this work, we study discrete prompt technologies in practice. There are two issues that arise with the standard prompt approach. First, it can overfit on the prompt template. Second, it requires manual effort to formulate the downstream task as a language model problem. In this paper, we propose an improvement to prompt-based fine-tuning that addresses these two issues. We refer to our approach as DynaMaR – Dynamic Prompt with Mask Token Representation. Results show that DynaMaR can achieve an average improvement of 10% in few-shot settings and improvement of 3.7% in data-rich settings over the standard fine-tuning approach on four e-commerce applications.


pdf bib
Semantic Aligned Multi-modal Transformer for Vision-LanguageUnderstanding: A Preliminary Study on Visual QA
Han Ding | Li Erran Li | Zhiting Hu | Yi Xu | Dilek Hakkani-Tur | Zheng Du | Belinda Zeng
Proceedings of the Third Workshop on Multimodal Artificial Intelligence

Recent vision-language understanding approaches adopt a multi-modal transformer pre-training and finetuning paradigm. Prior work learns representations of text tokens and visual features with cross-attention mechanisms and captures the alignment solely based on indirect signals. In this work, we propose to enhance the alignment mechanism by incorporating image scene graph structures as the bridge between the two modalities, and learning with new contrastive objectives. In our preliminary study on the challenging compositional visual question answering task, we show the proposed approach achieves improved results, demonstrating potentials to enhance vision-language understanding.

pdf bib
Dialogue-oriented Pre-training
Yi Xu | Hai Zhao
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Weakly-supervised Text Classification Based on Keyword Graph
Lu Zhang | Jiandong Ding | Yi Xu | Yingyao Liu | Shuigeng Zhou
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Weakly-supervised text classification has received much attention in recent years for it can alleviate the heavy burden of annotating massive data. Among them, keyword-driven methods are the mainstream where user-provided keywords are exploited to generate pseudo-labels for unlabeled texts. However, existing methods treat keywords independently, thus ignore the correlation among them, which should be useful if properly exploited. In this paper, we propose a novel framework called ClassKG to explore keyword-keyword correlation on keyword graph by GNN. Our framework is an iterative process. In each iteration, we first construct a keyword graph, so the task of assigning pseudo labels is transformed to annotating keyword subgraphs. To improve the annotation quality, we introduce a self-supervised task to pretrain a subgraph annotator, and then finetune it. With the pseudo labels generated by the subgraph annotator, we then train a text classifier to classify the unlabeled texts. Finally, we re-extract keywords from the classified texts. Extensive experiments on both long-text and short-text datasets show that our method substantially outperforms the existing ones.


pdf bib
On Leveraging the Visual Modality for Neural Machine Translation
Vikas Raunak | Sang Keun Choe | Quanyang Lu | Yi Xu | Florian Metze
Proceedings of the 12th International Conference on Natural Language Generation

Leveraging the visual modality effectively for Neural Machine Translation (NMT) remains an open problem in computational linguistics. Recently, Caglayan et al. posit that the observed gains are limited mainly due to the very simple, short, repetitive sentences of the Multi30k dataset (the only multimodal MT dataset available at the time), which renders the source text sufficient for context. In this work, we further investigate this hypothesis on a new large scale multimodal Machine Translation (MMT) dataset, How2, which has 1.57 times longer mean sentence length than Multi30k and no repetition. We propose and evaluate three novel fusion techniques, each of which is designed to ensure the utilization of visual context at different stages of the Sequence-to-Sequence transduction pipeline, even under full linguistic context. However, we still obtain only marginal gains under full linguistic context and posit that visual embeddings extracted from deep vision models (ResNet for Multi30k, ResNext for How2) do not lend themselves to increasing the discriminativeness between the vocabulary elements at token level prediction in NMT. We demonstrate this qualitatively by analyzing attention distribution and quantitatively through Principal Component Analysis, arriving at the conclusion that it is the quality of the visual embeddings rather than the length of sentences, which need to be improved in existing MMT datasets.