Yi Yu


pdf bib
Multi-TimeLine Summarization (MTLS): Improving Timeline Summarization by Generating Multiple Summaries
Yi Yu | Adam Jatowt | Antoine Doucet | Kazunari Sugiyama | Masatoshi Yoshikawa
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

In this paper, we address a novel task, Multiple TimeLine Summarization (MTLS), which extends the flexibility and versatility of Time-Line Summarization (TLS). Given any collection of time-stamped news articles, MTLS automatically discovers important yet different stories and generates a corresponding time-line for each story.To achieve this, we propose a novel unsupervised summarization framework based on two-stage affinity propagation. We also introduce a quantitative evaluation measure for MTLS based on previousTLS evaluation methods. Experimental results show that our MTLS framework demonstrates high effectiveness and MTLS task can give bet-ter results than TLS.