Yi Zheng


pdf bib
AraMUS: Pushing the Limits of Data and Model Scale for Arabic Natural Language Processing
Asaad Alghamdi | Xinyu Duan | Wei Jiang | Zhenhai Wang | Yimeng Wu | Qingrong Xia | Zhefeng Wang | Yi Zheng | Mehdi Rezagholizadeh | Baoxing Huai | Peilun Cheng | Abbas Ghaddar
Findings of the Association for Computational Linguistics: ACL 2023

Developing monolingual large Pre-trained Language Models (PLMs) is shown to be very successful in handling different tasks in Natural Language Processing (NLP). In this work, we present AraMUS, the largest Arabic PLM with 11B parameters trained on 529GB of high-quality Arabic textual data. AraMUS achieves state-of-the-art performances on a diverse set of Arabic classification and generative tasks. Moreover, AraMUS shows impressive few-shot learning abilities compared with the best existing Arabic PLMs.


pdf bib
Delving Deep into Regularity: A Simple but Effective Method for Chinese Named Entity Recognition
Yingjie Gu | Xiaoye Qu | Zhefeng Wang | Yi Zheng | Baoxing Huai | Nicholas Jing Yuan
Findings of the Association for Computational Linguistics: NAACL 2022

Recent years have witnessed the improving performance of Chinese Named Entity Recognition (NER) from proposing new frameworks or incorporating word lexicons. However, the inner composition of entity mentions in character-level Chinese NER has been rarely studied. Actually, most mentions of regular types have strong name regularity. For example, entities end with indicator words such as “公司 (company) ” or “银行 (bank)” usually belong to organization. In this paper, we propose a simple but effective method for investigating the regularity of entity spans in Chinese NER, dubbed as Regularity-Inspired reCOgnition Network (RICON). Specifically, the proposed model consists of two branches: a regularity-aware module and a regularity-agnostic module. The regularity-aware module captures the internal regularity of each span for better entity type prediction, while the regularity-agnostic module is employed to locate the boundary of entities and relieve the excessive attention to span regularity. An orthogonality space is further constructed to encourage two modules to extract different aspects of regularity features. To verify the effectiveness of our method, we conduct extensive experiments on three benchmark datasets and a practical medical dataset. The experimental results show that our RICON significantly outperforms previous state-of-the-art methods, including various lexicon-based methods.

pdf bib
ReCo: Reliable Causal Chain Reasoning via Structural Causal Recurrent Neural Networks
Kai Xiong | Xiao Ding | Zhongyang Li | Li Du | Ting Liu | Bing Qin | Yi Zheng | Baoxing Huai
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Causal chain reasoning (CCR) is an essential ability for many decision-making AI systems, which requires the model to build reliable causal chains by connecting causal pairs. However, CCR suffers from two main transitive problems: threshold effect and scene drift. In other words, the causal pairs to be spliced may have a conflicting threshold boundary or scenario. To address these issues, we propose a novel Reliable Causal chain reasoning framework (ReCo), which introduces exogenous variables to represent the threshold and scene factors of each causal pair within the causal chain, and estimates the threshold and scene contradictions across exogenous variables via structural causal recurrent neural networks (SRNN). Experiments show that ReCo outperforms a series of strong baselines on both Chinese and English CCR datasets. Moreover, by injecting reliable causal chain knowledge distilled by ReCo, BERT can achieve better performances on four downstream causal-related tasks than BERT models enhanced by other kinds of knowledge.


pdf bib
Summarising Historical Text in Modern Languages
Xutan Peng | Yi Zheng | Chenghua Lin | Advaith Siddharthan
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

We introduce the task of historical text summarisation, where documents in historical forms of a language are summarised in the corresponding modern language. This is a fundamentally important routine to historians and digital humanities researchers but has never been automated. We compile a high-quality gold-standard text summarisation dataset, which consists of historical German and Chinese news from hundreds of years ago summarised in modern German or Chinese. Based on cross-lingual transfer learning techniques, we propose a summarisation model that can be trained even with no cross-lingual (historical to modern) parallel data, and further benchmark it against state-of-the-art algorithms. We report automatic and human evaluations that distinguish the historic to modern language summarisation task from standard cross-lingual summarisation (i.e., modern to modern language), highlight the distinctness and value of our dataset, and demonstrate that our transfer learning approach outperforms standard cross-lingual benchmarks on this task.


pdf bib
Hedge Classification with Syntactic Dependency Features Based on an Ensemble Classifier
Yi Zheng | Qifeng Dai | Qiming Luo | Enhong Chen
Proceedings of the Fourteenth Conference on Computational Natural Language Learning – Shared Task