Yidan Sun


2024

pdf bib
Multilingual Synopses of Movie Narratives: A Dataset for Vision-Language Story Understanding
Yidan Sun | Jianfei Yu | Boyang Li
Findings of the Association for Computational Linguistics: EMNLP 2024

Story video-text alignment, a core task in computational story understanding, aims to align video clips with corresponding sentences in their descriptions. However, progress on the task has been held back by the scarcity of manually annotated video-text correspondence and the heavy concentration on English narrations of Hollywood movies. To address these issues, in this paper, we construct a large-scale multilingual video story dataset named Multilingual Synopses of Movie Narratives (M-SyMoN), containing 13,166 movie summary videos from 7 languages, as well as manual annotation of fine-grained video-text correspondences for 101.5 hours of video. Training on the human annotated data from SyMoN outperforms the SOTA methods by 15.7 and 16.2 percentage points on Clip Accuracy and Sentence IoU scores, respectively, demonstrating the effectiveness of the annotations. As benchmarks for future research, we create 6 baseline approaches with different multilingual training strategies, compare their performance in both intra-lingual and cross-lingual setups, exemplifying the challenges of multilingual video-text alignment. The dataset is released at:https://github.com/insundaycathy/M-SyMoN

pdf bib
Event Causality Is Key to Computational Story Understanding
Yidan Sun | Qin Chao | Boyang Li
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Cognitive science and symbolic AI research suggest that event causality provides vital information for story understanding. However, machine learning systems for story understanding rarely employ event causality, partially due to the lack of methods that reliably identify open-world causal event relations. Leveraging recent progress in large language models, we present the first method for event causality identification that leads to material improvements in computational story understanding. Our technique sets a new state of the art on the COPES dataset (Wang et al., 2023c) for causal event relation identification. Further, in the downstream story quality evaluation task, the identified causal relations lead to 3.6-16.6% relative improvement on correlation with human ratings. In the multimodal story video-text alignment task, we attain 4.1-10.9% increase on Clip Accuracy and 4.2-13.5% increase on Sentence IoU. The findings indicate substantial untapped potential for event causality in computational story understanding. The codebase is at https://github.com/insundaycathy/Event-Causality-Extraction.