Yifan Hou


2023

pdf bib
Towards a Mechanistic Interpretation of Multi-Step Reasoning Capabilities of Language Models
Yifan Hou | Jiaoda Li | Yu Fei | Alessandro Stolfo | Wangchunshu Zhou | Guangtao Zeng | Antoine Bosselut | Mrinmaya Sachan
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Recent work has shown that language models (LMs) have strong multi-step (i.e., procedural) reasoning capabilities. However, it is unclear whether LMs perform these tasks by cheating with answers memorized from pretraining corpus, or, via a multi-step reasoning mechanism. In this paper, we try to answer this question by exploring a mechanistic interpretation of LMs for multi-step reasoning tasks. Concretely, we hypothesize that the LM implicitly embeds a reasoning tree resembling the correct reasoning process within it. We test this hypothesis by introducing a new probing approach (called MechanisticProbe) that recovers the reasoning tree from the model’s attention patterns. We use our probe to analyze two LMs: GPT-2 on a synthetic task (k-th smallest element), and LLaMA on two simple language-based reasoning tasks (ProofWriter & AI2 Reasoning Challenge). We show that MechanisticProbe is able to detect the information of the reasoning tree from the model’s attentions for most examples, suggesting that the LM indeed is going through a process of multi-step reasoning within its architecture in many cases.

pdf bib
Mitigating Label Biases for In-context Learning
Yu Fei | Yifan Hou | Zeming Chen | Antoine Bosselut
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Various design settings for in-context learning (ICL), such as the choice and order of the in-context examples, can bias the model’s predictions. While many studies discuss these design choices, there have been few systematic investigations into categorizing them and mitigating their impact. In this work, we define a typology for three types of label biases in ICL for text classification: vanilla-label bias, context-label bias, and domain-label bias (which we conceptualize and detect for the first time). Our analysis demonstrates that prior label bias calibration methods fall short of addressing all three types of biases. Specifically, domain-label bias restricts LLMs to random-level performance on many tasks regardless of the choice of in-context examples. To mitigate the effect of these biases, we propose a simple bias calibration method that estimates a language model’s label bias using random in-domain words from the task corpus. After controlling for this estimated bias when making predictions, our novel domain-context calibration significantly improves the ICL performance of GPT-J and GPT-3 on a wide range of tasks. The gain is substantial on tasks with large domain-label bias (up to 37% in Macro-F1). Furthermore, our results generalize to models with different scales, pretraining methods, and manually-designed task instructions, showing the prevalence of label biases in ICL.

2022

pdf bib
What Has Been Enhanced in my Knowledge-Enhanced Language Model?
Yifan Hou | Guoji Fu | Mrinmaya Sachan
Findings of the Association for Computational Linguistics: EMNLP 2022

A number of knowledge integration (KI) methods have recently been proposed to incorporate external knowledge into pretrained language models (LMs). Even though knowledge-enhanced LMs (KELMs) outperform base LMs on knowledge-intensive tasks, the inner-workings of these KI methods are not well-understood. For instance, it is unclear which knowledge is effectively integrated into KELMs and which is not; and if such integration led to catastrophic forgetting of already learned knowledge. We show that existing model interpretation methods such as linear probes and prompts have some key limitations in answering these questions. Then, we revisit KI from an information-theoretic view and propose a new theoretically sound probe model called Graph Convolution Simulator (GCS) for KI interpretation. GCS is eventually quite simple – it uses graph attention on the corresponding knowledge graph for interpretation. We conduct various experiments to verify that GCS provides reasonable interpretation results for two well-known KELMs: ERNIE and K-Adapter. Our experiments reveal that only little knowledge is successfully integrated in these models, and simply increasing the size of the KI corpus may not lead to better KELMs.

pdf bib
Adapters for Enhanced Modeling of Multilingual Knowledge and Text
Yifan Hou | Wenxiang Jiao | Meizhen Liu | Carl Allen | Zhaopeng Tu | Mrinmaya Sachan
Findings of the Association for Computational Linguistics: EMNLP 2022

Large language models appear to learn facts from the large text corpora they are trained on. Such facts are encoded implicitly within their many parameters, making it difficult to verify or manipulate what knowledge has been learned. Language models have recently been extended to multilingual language models (MLLMs), enabling knowledge to be learned across hundreds of languages. Meanwhile, knowledge graphs contain facts in an explicit triple format, which require careful and costly curation and are only available in a few high-resource languages, restricting their research and application. To address these issues, we propose to enhance MLLMs with knowledge from multilingual knowledge graphs (MLKGs) so as to tackle language and knowledge graph tasks across many languages, including low-resource ones. Specifically, we introducea lightweight adapter set to enhance MLLMs with cross-lingual entity alignment and facts from MLKGs for many languages. Experiments on common benchmarks show that such enhancement benefits both MLLMs and MLKGs, achieving: (1) comparable or improved performance for knowledge graph completion and entity alignment relative to baselines, especially for low-resource languages (for which knowledge graphs are unavailable); and (2) improved MLLM performance on language understanding tasks that require multilingual factual knowledge; all while maintaining performance on other general language tasks.

2021

pdf bib
Bird’s Eye: Probing for Linguistic Graph Structures with a Simple Information-Theoretic Approach
Yifan Hou | Mrinmaya Sachan
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

NLP has a rich history of representing our prior understanding of language in the form of graphs. Recent work on analyzing contextualized text representations has focused on hand-designed probe models to understand how and to what extent do these representations encode a particular linguistic phenomenon. However, due to the inter-dependence of various phenomena and randomness of training probe models, detecting how these representations encode the rich information in these linguistic graphs remains a challenging problem. In this paper, we propose a new information-theoretic probe, Bird’s Eye, which is a fairly simple probe method for detecting if and how these representations encode the information in these linguistic graphs. Instead of using model performance, our probe takes an information-theoretic view of probing and estimates the mutual information between the linguistic graph embedded in a continuous space and the contextualized word representations. Furthermore, we also propose an approach to use our probe to investigate localized linguistic information in the linguistic graphs using perturbation analysis. We call this probing setup Worm’s Eye. Using these probes, we analyze the BERT models on its ability to encode a syntactic and a semantic graph structure, and find that these models encode to some degree both syntactic as well as semantic information; albeit syntactic information to a greater extent.