Yifan Zhu


2024

pdf bib
ChatKBQA: A Generate-then-Retrieve Framework for Knowledge Base Question Answering with Fine-tuned Large Language Models
Haoran Luo | Haihong E | Zichen Tang | Shiyao Peng | Yikai Guo | Wentai Zhang | Chenghao Ma | Guanting Dong | Meina Song | Wei Lin | Yifan Zhu | Anh Tuan Luu
Findings of the Association for Computational Linguistics: ACL 2024

Knowledge Base Question Answering (KBQA) aims to answer natural language questions over large-scale knowledge bases (KBs), which can be summarized into two crucial steps: knowledge retrieval and semantic parsing. However, three core challenges remain: inefficient knowledge retrieval, mistakes of retrieval adversely impacting semantic parsing, and the complexity of previous KBQA methods. To tackle these challenges, we introduce ChatKBQA, a novel and simple generate-then-retrieve KBQA framework, which proposes first generating the logical form with fine-tuned LLMs, then retrieving and replacing entities and relations with an unsupervised retrieval method, to improve both generation and retrieval more directly. Experimental results show that ChatKBQA achieves new state-of-the-art performance on standard KBQA datasets, WebQSP, and CWQ. This work can also be regarded as a new paradigm for combining LLMs with knowledge graphs (KGs) for interpretable and knowledge-required question answering.

pdf bib
Common Ground Tracking in Multimodal Dialogue
Ibrahim Khalil Khebour | Kenneth Lai | Mariah Bradford | Yifan Zhu | Richard A. Brutti | Christopher Tam | Jingxuan Tu | Benjamin A. Ibarra | Nathaniel Blanchard | Nikhil Krishnaswamy | James Pustejovsky
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Within Dialogue Modeling research in AI and NLP, considerable attention has been spent on “dialogue state tracking” (DST), which is the ability to update the representations of the speaker’s needs at each turn in the dialogue by taking into account the past dialogue moves and history. Less studied but just as important to dialogue modeling, however, is “common ground tracking” (CGT), which identifies the shared belief space held by all of the participants in a task-oriented dialogue: the task-relevant propositions all participants accept as true. In this paper we present a method for automatically identifying the current set of shared beliefs and ”questions under discussion” (QUDs) of a group with a shared goal. We annotate a dataset of multimodal interactions in a shared physical space with speech transcriptions, prosodic features, gestures, actions, and facets of collaboration, and operationalize these features for use in a deep neural model to predict moves toward construction of common ground. Model outputs cascade into a set of formal closure rules derived from situated evidence and belief axioms and update operations. We empirically assess the contribution of each feature type toward successful construction of common ground relative to ground truth, establishing a benchmark in this novel, challenging task.

2023

pdf bib
UMR annotation of Chinese Verb compounds and related constructions
Haibo Sun | Yifan Zhu | Jin Zhao | Nianwen Xue
Proceedings of the First International Workshop on Construction Grammars and NLP (CxGs+NLP, GURT/SyntaxFest 2023)

This paper discusses the challenges of annotating the predicate-argument structure of Chinese verb compounds in Uniform Meaning Representation (UMR), a recent meaning representation framework that extends Abstract Meaning Representation (AMR) to cross-linguistic settings. The key issue is to decide whether to annotate the argument structure of a verb compound as a whole, or to annotate the argument structure of their component verbs as well as the relations between them. We examine different types of Chinese verb compounds, and propose how to annotate them based on the principle of compositionality, level of grammaticalization, and productivity of component verbs. We propose a solution to the practical problem of having to define the semantic roles for Chinese verb compounds that are quite open-ended by separating compositional verb compounds from verb compounds that are non-compositional or have grammaticalized verb components. For compositional verb compounds, instead of annotating the argument structure of the verb compound as a whole, we annotate the argument structure of the component verbs as well as the semantic relations between them as creating an exhaustive list of such verb compounds is infeasible. Verb compounds with grammaticalized verb components also tend to be productive and we represent grammaticalized verb compounds as either attributes of the primary verb or as relations.