Yifei Yang


pdf bib
Aspect-based Sentiment Analysis as Machine Reading Comprehension
Yifei Yang | Hai Zhao
Proceedings of the 29th International Conference on Computational Linguistics

Existing studies typically handle aspect-based sentiment analysis by stacking multiple neural modules, which inevitably result in severe error propagation. Instead, we propose a novel end-to-end framework, MRCOOL: MRC-PrOmpt mOdeL framework, where numerous sentiment aspects are elicited by a machine reading comprehension (MRC) model and their corresponding sentiment polarities are classified in a prompt learning way. Experiments show that our end-to-end framework consistently yields promising results on widely-used benchmark datasets which significantly outperform existing state-of-the-art models or achieve comparable performance.

pdf bib
Nested Named Entity Recognition as Corpus Aware Holistic Structure Parsing
Yifei Yang | Zuchao Li | Hai Zhao
Proceedings of the 29th International Conference on Computational Linguistics

As a fundamental natural language processing task and one of core knowledge extraction techniques, named entity recognition (NER) is widely used to extract information from texts for downstream tasks. Nested NER is a branch of NER in which the named entities (NEs) are nested with each other. However, most of the previous studies on nested NER usually apply linear structure to model the nested NEs which are actually accommodated in a hierarchical structure. Thus in order to address this mismatch, this work models the full nested NEs in a sentence as a holistic structure, then we propose a holistic structure parsing algorithm to disclose the entire NEs once for all. Besides, there is no research on applying corpus-level information to NER currently. To make up for the loss of this information, we introduce Point-wise Mutual Information (PMI) and other frequency features from corpus-aware statistics for even better performance by holistic modeling from sentence-level to corpus-level. Experiments show that our model yields promising results on widely-used benchmarks which approach or even achieve state-of-the-art. Further empirical studies show that our proposed corpus-aware features can substantially improve NER domain adaptation, which demonstrates the surprising advantage of our proposed corpus-level holistic structure modeling.


pdf bib
Modeling Semantics and Pragmatics of Spatial Prepositions via Hierarchical Common-Sense Primitives
Georgiy Platonov | Yifei Yang | Haoyu Wu | Jonathan Waxman | Marcus Hill | Lenhart Schubert
Proceedings of Second International Combined Workshop on Spatial Language Understanding and Grounded Communication for Robotics

Understanding spatial expressions and using them appropriately is necessary for seamless and natural human-machine interaction. However, capturing the semantics and appropriate usage of spatial prepositions is notoriously difficult, because of their vagueness and polysemy. Although modern data-driven approaches are good at capturing statistical regularities in the usage, they usually require substantial sample sizes, often do not generalize well to unseen instances and, most importantly, their structure is essentially opaque to analysis, which makes diagnosing problems and understanding their reasoning process difficult. In this work, we discuss our attempt at modeling spatial senses of prepositions in English using a combination of rule-based and statistical learning approaches. Each preposition model is implemented as a tree where each node computes certain intuitive relations associated with the preposition, with the root computing the final value of the prepositional relation itself. The models operate on a set of artificial 3D “room world” environments, designed in Blender, taking the scene itself as an input. We also discuss our annotation framework used to collect human judgments employed in the model training. Both our factored models and black-box baseline models perform quite well, but the factored models will enable reasoned explanations of spatial relation judgements.