2024
pdf
bib
abs
Think While You Write: Hypothesis Verification Promotes Faithful Knowledge-to-Text Generation
Yifu Qiu
|
Varun Embar
|
Shay Cohen
|
Benjamin Han
Findings of the Association for Computational Linguistics: NAACL 2024
Knowledge-to-text generators often struggle to faithfully generate descriptions for the input facts: they may produce hallucinations that contradict the input, or describe facts not present in the input. To reduce hallucinations, we propose a decoding-only method, TWEAK (Think While Effectively Articulating Knowledge), which can be integrated with any generator without retraining. TWEAK treats the generated sequences at each decoding step and its future sequences as hypotheses, and ranks each generation candidate based on the extent to which their hypotheses are supported by the input facts using a Hypothesis Verification Model (HVM). We first demonstrate the effectiveness of TWEAK by using a Natural Language Inference (NLI) model as the HVM and report improved faithfulness with a minimal impact on the quality. We then replace the NLI model with a task-specific HVM trained with a first-of-a-kind dataset, FATE (Fact-Aligned Textual Entailment), which pairs input facts with their original and perturbed descriptions. We test TWEAK with two generators, and the best TWEAK variants improve on average for the two models by 2.24/7.17 points in faithfulness (FactKB) in in/out-of-distribution evaluations, respectively, and with only a 0.14/0.32-point decline in quality (BERTScore).
pdf
bib
abs
Are Large Language Model Temporally Grounded?
Yifu Qiu
|
Zheng Zhao
|
Yftah Ziser
|
Anna Korhonen
|
Edoardo Ponti
|
Shay Cohen
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Are Large Language Models (LLMs) temporally grounded? Since LLMs cannot perceive and interact with the environment, it is impossible to answer this question directly. Instead, we provide LLMs with textual narratives and probe them with respect to their common-sense knowledge of the structure and duration of events, their ability to order events along a timeline, and self-consistency within their temporal model (e.g., temporal relations such as after and before are mutually exclusive for any pair of events). We evaluate state-of-the-art LLMs (such as LLaMA 2 and GPT-4) on three tasks reflecting these abilities. Generally, we find that LLMs lag significantly behind both human performance as well as small-scale, specialised LMs. In-context learning, instruction tuning, and chain-of-thought prompting reduce this gap only to a limited degree. Crucially, LLMs struggle the most with self-consistency, displaying incoherent behaviour in at least 27.23% of their predictions. Contrary to expectations, we also find that scaling the model size does not guarantee positive gains in performance. To explain these results, we study the sources from which LLMs may gather temporal information: we find that sentence ordering in unlabelled texts, available during pre-training, is only weakly correlated with event ordering. Moreover, public instruction tuning mixtures contain few temporal tasks. Hence, we conclude that current LLMs lack a consistent temporal model of textual narratives.
pdf
bib
abs
EEE-QA: Exploring Effective and Efficient Question-Answer Representations
Zhanghao Hu
|
Yijun Yang
|
Junjie Xu
|
Yifu Qiu
|
Pinzhen Chen
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Current approaches to question answering rely on pre-trained language models (PLMs) like RoBERTa. This work challenges the existing question-answer encoding convention and explores finer representations. We begin with testing various pooling methods compared to using the begin-of-sentence token as a question representation for better quality. Next, we explore opportunities to simultaneously embed all answer candidates with the question. This enables cross-reference between answer choices and improves inference throughput via reduced memory usage. Despite their simplicity and effectiveness, these methods have yet to be widely studied in current frameworks. We experiment with different PLMs, and with and without the integration of knowledge graphs. Results prove that the memory efficacy of the proposed techniques with little sacrifice in performance. Practically, our work enhances 38-100% throughput with 26-65% speedups on consumer-grade GPUs by allowing for considerably larger batch sizes. Our work sends a message to the community with promising directions in both representation quality and efficiency for the question-answering task in natural language processing.
2023
pdf
bib
abs
Detecting and Mitigating Hallucinations in Multilingual Summarisation
Yifu Qiu
|
Yftah Ziser
|
Anna Korhonen
|
Edoardo Ponti
|
Shay Cohen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Hallucinations pose a significant challenge to the reliability of neural models for abstractive summarisation. While automatically generated summaries may be fluent, they often lack faithfulness to the original document. This issue becomes even more pronounced in low-resource languages, where summarisation requires cross-lingual transfer. With the existing faithful metrics focusing on English, even measuring the extent of this phenomenon in cross-lingual settings is hard. To address this, we first develop a novel metric, mFACT, evaluating the faithfulness of non-English summaries, leveraging translation-based transfer from multiple English faithfulness metrics. Through extensive experiments in multiple languages, we demonstrate that mFACT is best suited to detect hallucinations compared to alternative metrics. With mFACT, we assess a broad range of multilingual large language models, and find that they all tend to hallucinate often in languages different from English. We then propose a simple but effective method to reduce hallucinations in cross-lingual transfer, which weighs the loss of each training example by its faithfulness score. This method drastically increases both performance and faithfulness according to both automatic and human evaluation when compared to strong baselines for cross-lingual transfer such as MAD-X. Our code and dataset are available at https://github.com/yfqiu-nlp/mfact-summ.
2022
pdf
bib
abs
Abstractive Summarization Guided by Latent Hierarchical Document Structure
Yifu Qiu
|
Shay B. Cohen
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Sequential abstractive neural summarizers often do not use the underlying structure in the input article or dependencies between the input sentences. This structure is essential to integrate and consolidate information from different parts of the text. To address this shortcoming, we propose a hierarchy-aware graph neural network (HierGNN) which captures such dependencies through three main steps: 1) learning a hierarchical document structure through a latent structure tree learned by a sparse matrix-tree computation; 2) propagating sentence information over this structure using a novel message-passing node propagation mechanism to identify salient information; 3) using graph-level attention to concentrate the decoder on salient information. Experiments confirm HierGNN improves strong sequence models such as BART, with a 0.55 and 0.75 margin in average ROUGE-1/2/L for CNN/DM and XSum. Further human evaluation demonstrates that summaries produced by our model are more relevant and less redundant than the baselines, into which HierGNN is incorporated. We also find HierGNN synthesizes summaries by fusing multiple source sentences more, rather than compressing a single source sentence, and that it processes long inputs more effectively.
pdf
bib
abs
DuReader-Retrieval: A Large-scale Chinese Benchmark for Passage Retrieval from Web Search Engine
Yifu Qiu
|
Hongyu Li
|
Yingqi Qu
|
Ying Chen
|
QiaoQiao She
|
Jing Liu
|
Hua Wu
|
Haifeng Wang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
In this paper, we present DuReader-retrieval, a large-scale Chinese dataset for passage retrieval. DuReader-retrieval contains more than 90K queries and over 8M unique passages from a commercial search engine. To alleviate the shortcomings of other datasets and ensure the quality of our benchmark, we (1) reduce the false negatives in development and test sets by manually annotating results pooled from multiple retrievers, and (2) remove the training queries that are semantically similar to the development and testing queries. Additionally, we provide two out-of-domain testing sets for cross-domain evaluation, as well as a set of human translated queries for for cross-lingual retrieval evaluation. The experiments demonstrate that DuReader-retrieval is challenging and a number of problems remain unsolved, such as the salient phrase mismatch and the syntactic mismatch between queries and paragraphs. These experiments also show that dense retrievers do not generalize well across domains, and cross-lingual retrieval is essentially challenging. DuReader-retrieval is publicly available at https://github.com/baidu/DuReader/tree/master/DuReader-Retrieval.