While LLMs demonstrate impressive capabilities in musical knowledge, we find that music reasoning is still an unsolved task.We introduce ChatMusician, an open-source large language model (LLM) that integrates intrinsic musical abilities. It is based on continual pre-training and finetuning LLaMA2 on a text-compatible music representation, ABC notation, and the music is treated as a second language.ChatMusician can understand and generate music with a pure text tokenizer without external multi-modal neural structures or tokenizers. Interestingly, endowing musical abilities does not harm language abilities, even achieving a slightly higher MMLU score.ChatMusician is capable of composing well-structured, full-length music, condition on texts, chords, melodies, motifs, musical forms, etc.On our meticulously curated college-level music understanding benchmark, MusicTheoryBench, ChatMusician surpasses LLaMA2 and GPT-3.5 by a noticeable margin. We show that ChatMusician preserves or even surpasses the original LLaMA2 7B’s language abilities by evaluating on MMLU benchmark.Our work reveals that LLMs can be an excellent compressor for music, which can be seen as humanity’s creative language, but there remains significant territory to be conquered.We release our 5B token music-language corpora MusicPiles, the collected MusicTheoryBench, code, model and demo.
Generating well-structured long music compositions, spanning several minutes, remains a challenge due to inefficient representation and the lack of structured representation. In this paper, we propose PyramidCodec, a hierarchical discrete representation of audio, for long audio-domain music generation. Specifically, we employ residual vector quantization on different levels of features to obtain the hierarchical discrete representation. The highest level of features has the largest hop size, resulting in the most compact token sequence. The quantized higher-level representation is up-sampled and combined with lower-level features to apply residual vector quantization and obtain lower-level discrete representations. Furthermore, we design a hierarchical training strategy to ensure that the details are gradually added with more levels of tokens. By performing hierarchical tokenization, the overall token sequence represents information at various scales, facilitating long-context modeling in music and enabling the generation of well-structured compositions. The experimental results demonstrate that our proposed PyramidCodec achieves competitive performance in terms of reconstruction quality and token per second (TPS). By enabling ultra-long music modeling at the lowest level, the proposed approach facilitates training a language model that can generate well-structured long-form music for up to 3 minutes, whose quality is further demonstrated by subjective and objective evaluations. The samples can be found at https://pyramidcodec.github.io/.
Driven by recent advances in neural networks, various Deep Embedding Clustering (DEC) based short text clustering models are being developed. In these works, latent representation learning and text clustering are performed simultaneously. Although these methods are becoming increasingly popular, they use pure cluster-oriented objectives, which can produce meaningless representations. To alleviate this problem, several improvements have been developed to introduce additional learning objectives in the clustering process, such as models based on contrastive learning. However, existing efforts rely heavily on learning meaningful representations at the instance level. They have limited focus on learning global representations, which are necessary to capture the overall data structure at the cluster level. In this paper, we propose a novel DEC model, which we named the deep embedded clustering model with cluster-level representation learning (DECCRL) to jointly learn cluster and instance level representations. Here, we extend the embedded topic modelling approach to introduce reconstruction constraints to help learn cluster-level representations. Experimental results on real-world short text datasets demonstrate that our model produces meaningful clusters.
Contextualised word embeddings is a powerful tool to detect contextual synonyms. However, most of the current state-of-the-art (SOTA) deep learning concept extraction methods remain supervised and underexploit the potential of the context. In this paper, we propose a self-supervised pre-training approach which is able to detect contextual synonyms of concepts being training on the data created by shallow matching. We apply our methodology in the sparse multi-class setting (over 15,000 concepts) to extract phenotype information from electronic health records. We further investigate data augmentation techniques to address the problem of the class sparsity. Our approach achieves a new SOTA for the unsupervised phenotype concept annotation on clinical text on F1 and Recall outperforming the previous SOTA with a gain of up to 4.5 and 4.0 absolute points, respectively. After fine-tuning with as little as 20% of the labelled data, we also outperform BioBERT and ClinicalBERT. The extrinsic evaluation on three ICU benchmarks also shows the benefit of using the phenotypes annotated by our model as features.
Insufficient or even unavailable training data of emerging classes is a big challenge of many classification tasks, including text classification. Recognising text documents of classes that have never been seen in the learning stage, so-called zero-shot text classification, is therefore difficult and only limited previous works tackled this problem. In this paper, we propose a two-phase framework together with data augmentation and feature augmentation to solve this problem. Four kinds of semantic knowledge (word embeddings, class descriptions, class hierarchy, and a general knowledge graph) are incorporated into the proposed framework to deal with instances of unseen classes effectively. Experimental results show that each and the combination of the two phases achieve the best overall accuracy compared with baselines and recent approaches in classifying real-world texts under the zero-shot scenario.