Yike Zhao


2025

pdf bib
UnifiedGEC: Integrating Grammatical Error Correction Approaches for Multi-languages with a Unified Framework
Yike Zhao | Xiaoman Wang | Yunshi Lan | Weining Qian
Proceedings of the 31st International Conference on Computational Linguistics: System Demonstrations

Grammatical Error Correction is an important research direction in NLP field. Although many models of different architectures and datasets across different languages have been developed to support the research, there is a lack of a comprehensive evaluation on these models, and different architectures make it hard for developers to implement these models on their own. To address this limitation, we present UnifiedGEC, the first open-source GEC-oriented toolkit, which consists of several core components and reusable modules. In UnifiedGEC, we integrate 5 widely-used GEC models and compare their performance on 7 datasets in different languages. Additionally, GEC-related modules such as data augmentation, prompt engineering are also deployed in it. Developers are allowed to implement new models, run and evaluate on existing benchmarks through our framework in a simple way. Code, documents and detailed results of UnifiedGEC are available at https://github.com/AnKate/UnifiedGEC.