Yilin Geng


2025

pdf bib
Loki: An Open-Source Tool for Fact Verification
Haonan Li | Xudong Han | Hao Wang | Yuxia Wang | Minghan Wang | Rui Xing | Yilin Geng | Zenan Zhai | Preslav Nakov | Timothy Baldwin
Proceedings of the 31st International Conference on Computational Linguistics: System Demonstrations

We introduce Loki, an open-source tool designed to address the growing problem of misinformation. Loki adopts a human-centered approach, striking a balance between the quality of fact-checking and the cost of human involvement. It decomposes the fact-checking task into a five-step pipeline: breaking down long texts into individual claims, assessing their check-worthiness, generating queries, retrieving evidence, and verifying the claims. Instead of fully automating the claim verification process, provides essential information at each step to assist human judgment, especially for general users such as journalists and content moderators. Moreover, it has been optimized for latency, robustness, and cost efficiency at a commercially usable level. Loki is released under an MIT license and is available on GitHub. We also provide a video presenting the system and its capabilities.

2022

pdf bib
Inducing Generalizable and Interpretable Lexica
Yilin Geng | Zetian Wu | Roshan Santhosh | Tejas Srivastava | Lyle Ungar | João Sedoc
Findings of the Association for Computational Linguistics: EMNLP 2022

Lexica – words and associated scores – are widely used as simple, interpretable, generalizable language features to predict sentiment, emotions, mental health, and personality. They also provide insight into the psychological features behind those moods and traits. Such lexica, historically created by human experts, are valuable to linguists, psychologists, and social scientists, but they take years of refinement and have limited coverage. In this paper, we investigate how the lexica that provide psycholinguistic insights could be computationally induced and how they should be assessed. We identify generalizability and interpretability as two essential properties of such lexica. We induce lexica using both context-oblivious and context-aware approaches, compare their predictive performance both within the training corpus and across various corpora, and evaluate their quality using crowd-worker assessment. We find that lexica induced from context-oblivious models are more generalizable and interpretable than those from more accurate context-aware transformer models. In addition, lexicon scores can identify explanatory words more reliably than a high performing transformer with feature-importance measures like SHAP.