Yilong Wu


2024

pdf bib
ToolSword: Unveiling Safety Issues of Large Language Models in Tool Learning Across Three Stages
Junjie Ye | Sixian Li | Guanyu Li | Caishuang Huang | Songyang Gao | Yilong Wu | Qi Zhang | Tao Gui | Xuanjing Huang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Tool learning is widely acknowledged as a foundational approach or deploying large language models (LLMs) in real-world scenarios. While current research primarily emphasizes leveraging tools to augment LLMs, it frequently neglects emerging safety considerations tied to their application. To fill this gap, we present ToolSword, a comprehensive framework dedicated to meticulously investigating safety issues linked to LLMs in tool learning. Specifically, ToolSword delineates six safety scenarios for LLMs in tool learning, encompassing malicious queries and jailbreak attacks in the input stage, noisy misdirection and risky cues in the execution stage, and harmful feedback and error conflicts in the output stage. Experiments conducted on 11 open-source and closed-source LLMs reveal enduring safety challenges in tool learning, such as handling harmful queries, employing risky tools, and delivering detrimental feedback, which even GPT-4 is susceptible to. Moreover, we conduct further studies with the aim of fostering research on tool learning safety. The data will be released upon acceptance of the paper.

pdf bib
RoTBench: A Multi-Level Benchmark for Evaluating the Robustness of Large Language Models in Tool Learning
Junjie Ye | Yilong Wu | Songyang Gao | Caishuang Huang | Sixian Li | Guanyu Li | Xiaoran Fan | Qi Zhang | Tao Gui | Xuanjing Huang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Tool learning has generated widespread interest as a vital means of interaction between Large Language Models (LLMs) and the physical world. Current research predominantly emphasizes LLMs’ capacity to utilize tools in well-structured environments while overlooking their stability when confronted with the inevitable noise of the real world. To bridge this gap, we introduce *RoTBench*, a multi-level benchmark for evaluating the robustness of LLMs in tool learning. Specifically, we establish five external environments, each featuring varying levels of noise (i.e., Clean, Slight, Medium, Heavy, and Union), providing an in-depth analysis of the model’s resilience across three critical phases: tool selection, parameter identification, and content filling. Experiments involving six widely-used models underscore the urgent necessity for enhancing the robustness of LLMs in tool learning. For instance, the performance of GPT-4 even drops significantly from 80.00 to 58.10 when there is no substantial change in manual accuracy. More surprisingly, the noise correction capability inherent in the GPT family paradoxically impedes its adaptability in the face of mild noise. In light of these findings, we propose RoTTuning, a strategy that enriches the diversity of training environments to bolster the robustness of LLMs in tool learning. The code and data are available at https://github.com/Junjie-Ye/RoTBench.

pdf bib
TransferTOD: A Generalizable Chinese Multi-Domain Task-Oriented Dialogue System with Transfer Capabilities
Ming Zhang | Caishuang Huang | Yilong Wu | Shichun Liu | Huiyuan Zheng | Yurui Dong | Yujiong Shen | Shihan Dou | Jun Zhao | Junjie Ye | Qi Zhang | Tao Gui | Xuanjing Huang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Task-oriented dialogue (TOD) systems aim to efficiently handle task-oriented conversations, including information collection. How to utilize TOD accurately, efficiently and effectively for information collection has always been a critical and challenging task. Recent studies have demonstrated that Large Language Models (LLMs) excel in dialogue, instruction generation, and reasoning, and can significantly enhance the performance of TOD through fine-tuning. However, current datasets primarily cater to user-led systems and are limited to predefined specific scenarios and slots, thereby necessitating improvements in the proactiveness, diversity, and capabilities of TOD. In this study, we present a detailed multi-domain task-oriented data construction process for conversations, and a Chinese dialogue dataset generated based on this process, **TransferTOD**, which authentically simulates human-computer dialogues in 30 popular life service scenarios. Leveraging this dataset, we trained a model using full-parameter fine-tuning called **TransferTOD-7B**, showcasing notable abilities in slot filling and questioning. Our work has demonstrated its strong generalization capabilities in various downstream scenarios, significantly enhancing both data utilization efficiency and system performance. The data is released in https://github.com/KongLongGeFDU/TransferTOD.