Yiming Zhang


2022

pdf bib
Active Example Selection for In-Context Learning
Yiming Zhang | Shi Feng | Chenhao Tan
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

With a handful of demonstration examples, large-scale language models demonstrate strong capability to perform various tasks by in-context learning from these examples, without any fine-tuning. We demonstrate that in-context learning performance can be highly unstable across samples of examples, indicating the idiosyncrasies of how language models acquire information. We formulate example selection for in-context learning as a sequential decision problem, and propose a reinforcement learning algorithm for identifying generalizable policies to select demonstration examples. For GPT-2, our learned policies demonstrate strong abilities of generalizing to unseen tasks in training, with a 5.8% improvement on average. Examples selected from our learned policies can even achieve a small improvement on GPT-3 Ada. However, the improvement diminishes on larger GPT-3 models, suggesting emerging capabilities of large language models.

pdf bib
Towards Unifying the Label Space for Aspect- and Sentence-based Sentiment Analysis
Yiming Zhang | Min Zhang | Sai Wu | Junbo Zhao
Findings of the Association for Computational Linguistics: ACL 2022

The aspect-based sentiment analysis (ABSA) is a fine-grained task that aims to determine the sentiment polarity towards targeted aspect terms occurring in the sentence. The development of the ABSA task is very much hindered by the lack of annotated data. To tackle this, the prior works have studied the possibility of utilizing the sentiment analysis (SA) datasets to assist in training the ABSA model, primarily via pretraining or multi-task learning. In this article, we follow this line, and for the first time, we manage to apply the Pseudo-Label (PL) method to merge the two homogeneous tasks. While it seems straightforward to use generated pseudo labels to handle this case of label granularity unification for two highly related tasks, we identify its major challenge in this paper and propose a novel framework, dubbed as Dual-granularity Pseudo Labeling (DPL). Further, similar to PL, we regard the DPL as a general framework capable of combining other prior methods in the literature. Through extensive experiments, DPL has achieved state-of-the-art performance on standard benchmarks surpassing the prior work significantly.

2019

pdf bib
D-NET: A Pre-Training and Fine-Tuning Framework for Improving the Generalization of Machine Reading Comprehension
Hongyu Li | Xiyuan Zhang | Yibing Liu | Yiming Zhang | Quan Wang | Xiangyang Zhou | Jing Liu | Hua Wu | Haifeng Wang
Proceedings of the 2nd Workshop on Machine Reading for Question Answering

In this paper, we introduce a simple system Baidu submitted for MRQA (Machine Reading for Question Answering) 2019 Shared Task that focused on generalization of machine reading comprehension (MRC) models. Our system is built on a framework of pretraining and fine-tuning, namely D-NET. The techniques of pre-trained language models and multi-task learning are explored to improve the generalization of MRC models and we conduct experiments to examine the effectiveness of these strategies. Our system is ranked at top 1 of all the participants in terms of averaged F1 score. Our codes and models will be released at PaddleNLP.