Yinfei Yang


pdf bib
Proceedings of the Workshop on Multilingual Multimodal Learning
Emanuele Bugliarello | Kai-Wei Cheng | Desmond Elliott | Spandana Gella | Aishwarya Kamath | Liunian Harold Li | Fangyu Liu | Jonas Pfeiffer | Edoardo Maria Ponti | Krishna Srinivasan | Ivan Vulić | Yinfei Yang | Da Yin
Proceedings of the Workshop on Multilingual Multimodal Learning

pdf bib
Language-agnostic BERT Sentence Embedding
Fangxiaoyu Feng | Yinfei Yang | Daniel Cer | Naveen Arivazhagan | Wei Wang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

While BERT is an effective method for learning monolingual sentence embeddings for semantic similarity and embedding based transfer learning BERT based cross-lingual sentence embeddings have yet to be explored. We systematically investigate methods for learning multilingual sentence embeddings by combining the best methods for learning monolingual and cross-lingual representations including: masked language modeling (MLM), translation language modeling (TLM), dual encoder translation ranking, and additive margin softmax. We show that introducing a pre-trained multilingual language model dramatically reduces the amount of parallel training data required to achieve good performance by 80%. Composing the best of these methods produces a model that achieves 83.7% bi-text retrieval accuracy over 112 languages on Tatoeba, well above the 65.5% achieved by LASER, while still performing competitively on monolingual transfer learning benchmarks. Parallel data mined from CommonCrawl using our best model is shown to train competitive NMT models for en-zh and en-de. We publicly release our best multilingual sentence embedding model for 109+ languages at https://tfhub.dev/google/LaBSE.

pdf bib
SueNes: A Weakly Supervised Approach to Evaluating Single-Document Summarization via Negative Sampling
Forrest Bao | Ge Luo | Hebi Li | Minghui Qiu | Yinfei Yang | Youbiao He | Cen Chen
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Canonical automatic summary evaluation metrics, such as ROUGE, focus on lexical similarity which cannot well capture semantics nor linguistic quality and require a reference summary which is costly to obtain. Recently, there have been a growing number of efforts to alleviate either or both of the two drawbacks. In this paper, we present a proof-of-concept study to a weakly supervised summary evaluation approach without the presence of reference summaries. Massive data in existing summarization datasets are transformed for training by pairing documents with corrupted reference summaries. In cross-domain tests, our strategy outperforms baselines with promising improvements, and show a great advantage in gauging linguistic qualities over all metrics.

pdf bib
Sentence-T5: Scalable Sentence Encoders from Pre-trained Text-to-Text Models
Jianmo Ni | Gustavo Hernandez Abrego | Noah Constant | Ji Ma | Keith Hall | Daniel Cer | Yinfei Yang
Findings of the Association for Computational Linguistics: ACL 2022

We provide the first exploration of sentence embeddings from text-to-text transformers (T5) including the effects of scaling up sentence encoders to 11B parameters. Sentence embeddings are broadly useful for language processing tasks. While T5 achieves impressive performance on language tasks, it is unclear how to produce sentence embeddings from encoder-decoder models. We investigate three methods to construct Sentence-T5 (ST5) models: two utilize only the T5 encoder and one using the full T5 encoder-decoder. We establish a new sentence representation transfer benchmark, SentGLUE, which extends the SentEval toolkit to nine tasks from the GLUE benchmark. Our encoder-only models outperform the previous best models on both SentEval and SentGLUE transfer tasks, including semantic textual similarity (STS). Scaling up ST5 from millions to billions of parameters shown to consistently improve performance. Finally, our encoder-decoder method achieves a new state-of-the-art on STS when using sentence embeddings.

pdf bib
LongT5: Efficient Text-To-Text Transformer for Long Sequences
Mandy Guo | Joshua Ainslie | David Uthus | Santiago Ontanon | Jianmo Ni | Yun-Hsuan Sung | Yinfei Yang
Findings of the Association for Computational Linguistics: NAACL 2022

Recent work has shown that either (1) increasing the input length or (2) increasing model size can improve the performance of Transformer-based neural models. In this paper, we present LongT5, a new model that explores the effects of scaling both the input length and model size at the same time. Specifically, we integrate attention ideas from long-input transformers (ETC), and adopt pre-training strategies from summarization pre-training (PEGASUS) into the scalable T5 architecture. The result is a new attention mechanism we call Transient Global (TGlobal), which mimics ETC’s local/global attention mechanism, but without requiring additional side-inputs. We are able to achieve state-of-the-art results on several summarization and question answering tasks, as well as outperform the original T5 models on these tasks. We have open sourced our architecture and training code, as well as our pre-trained model checkpoints.


pdf bib
MultiReQA: A Cross-Domain Evaluation forRetrieval Question Answering Models
Mandy Guo | Yinfei Yang | Daniel Cer | Qinlan Shen | Noah Constant
Proceedings of the Second Workshop on Domain Adaptation for NLP

Retrieval question answering (ReQA) is the task of retrieving a sentence-level answer to a question from an open corpus (Ahmad et al.,2019).This dataset paper presents MultiReQA, a new multi-domain ReQA evaluation suite composed of eight retrieval QA tasks drawn from publicly available QA datasets. We explore systematic retrieval based evaluation and transfer learning across domains over these datasets using a number of strong base-lines including two supervised neural models, based on fine-tuning BERT and USE-QA models respectively, as well as a surprisingly effective information retrieval baseline, BM25. Five of these tasks contain both training and test data, while three contain test data only. Performing cross training on the five tasks with training data shows that while a general model covering all domains is achievable, the best performance is often obtained by training exclusively on in-domain data.

pdf bib
Interpretability Analysis for Named Entity Recognition to Understand System Predictions and How They Can Improve
Oshin Agarwal | Yinfei Yang | Byron C. Wallace | Ani Nenkova
Computational Linguistics, Volume 47, Issue 1 - March 2021

Abstract Named entity recognition systems achieve remarkable performance on domains such as English news. It is natural to ask: What are these models actually learning to achieve this? Are they merely memorizing the names themselves? Or are they capable of interpreting the text and inferring the correct entity type from the linguistic context? We examine these questions by contrasting the performance of several variants of architectures for named entity recognition, with some provided only representations of the context as features. We experiment with GloVe-based BiLSTM-CRF as well as BERT. We find that context does influence predictions, but the main factor driving high performance is learning the named tokens themselves. Furthermore, we find that BERT is not always better at recognizing predictive contexts compared to a BiLSTM-CRF model. We enlist human annotators to evaluate the feasibility of inferring entity types from context alone and find that humans are also mostly unable to infer entity types for the majority of examples on which the context-only system made errors. However, there is room for improvement: A system should be able to recognize any named entity in a predictive context correctly and our experiments indicate that current systems may be improved by such capability. Our human study also revealed that systems and humans do not always learn the same contextual clues, and context-only systems are sometimes correct even when humans fail to recognize the entity type from the context. Finally, we find that one issue contributing to model errors is the use of “entangled” representations that encode both contextual and local token information into a single vector, which can obscure clues. Our results suggest that designing models that explicitly operate over representations of local inputs and context, respectively, may in some cases improve performance. In light of these and related findings, we highlight directions for future work.

pdf bib
A Simple and Effective Method To Eliminate the Self Language Bias in Multilingual Representations
Ziyi Yang | Yinfei Yang | Daniel Cer | Eric Darve
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Language agnostic and semantic-language information isolation is an emerging research direction for multilingual representations models. We explore this problem from a novel angle of geometric algebra and semantic space. A simple but highly effective method “Language Information Removal (LIR)” factors out language identity information from semantic related components in multilingual representations pre-trained on multi-monolingual data. A post-training and model-agnostic method, LIR only uses simple linear operations, e.g. matrix factorization and orthogonal projection. LIR reveals that for weak-alignment multilingual systems, the principal components of semantic spaces primarily encodes language identity information. We first evaluate the LIR on a cross-lingual question answer retrieval task (LAReQA), which requires the strong alignment for the multilingual embedding space. Experiment shows that LIR is highly effectively on this task, yielding almost 100% relative improvement in MAP for weak-alignment models. We then evaluate the LIR on Amazon Reviews and XEVAL dataset, with the observation that removing language information is able to improve the cross-lingual transfer performance.

pdf bib
Multi-stage Training with Improved Negative Contrast for Neural Passage Retrieval
Jing Lu | Gustavo Hernandez Abrego | Ji Ma | Jianmo Ni | Yinfei Yang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

In the context of neural passage retrieval, we study three promising techniques: synthetic data generation, negative sampling, and fusion. We systematically investigate how these techniques contribute to the performance of the retrieval system and how they complement each other. We propose a multi-stage framework comprising of pre-training with synthetic data, fine-tuning with labeled data, and negative sampling at both stages. We study six negative sampling strategies and apply them to the fine-tuning stage and, as a noteworthy novelty, to the synthetic data that we use for pre-training. Also, we explore fusion methods that combine negatives from different strategies. We evaluate our system using two passage retrieval tasks for open-domain QA and using MS MARCO. Our experiments show that augmenting the negative contrast in both stages is effective to improve passage retrieval accuracy and, importantly, they also show that synthetic data generation and negative sampling have additive benefits. Moreover, using the fusion of different kinds allows us to reach performance that establishes a new state-of-the-art level in two of the tasks we evaluated.

pdf bib
Universal Sentence Representation Learning with Conditional Masked Language Model
Ziyi Yang | Yinfei Yang | Daniel Cer | Jax Law | Eric Darve
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

This paper presents a novel training method, Conditional Masked Language Modeling (CMLM), to effectively learn sentence representations on large scale unlabeled corpora. CMLM integrates sentence representation learning into MLM training by conditioning on the encoded vectors of adjacent sentences. Our English CMLM model achieves state-of-the-art performance on SentEval, even outperforming models learned using supervised signals. As a fully unsupervised learning method, CMLM can be conveniently extended to a broad range of languages and domains. We find that a multilingual CMLM model co-trained with bitext retrieval (BR) and natural language inference (NLI) tasks outperforms the previous state-of-the-art multilingual models by a large margin, e.g. 10% improvement upon baseline models on cross-lingual semantic search. We explore the same language bias of the learned representations, and propose a simple, post-training and model agnostic approach to remove the language identifying information from the representation while still retaining sentence semantics.

pdf bib
MURAL: Multimodal, Multitask Representations Across Languages
Aashi Jain | Mandy Guo | Krishna Srinivasan | Ting Chen | Sneha Kudugunta | Chao Jia | Yinfei Yang | Jason Baldridge
Findings of the Association for Computational Linguistics: EMNLP 2021

Both image-caption pairs and translation pairs provide the means to learn deep representations of and connections between languages. We use both types of pairs in MURAL (MUltimodal, MUltitask Representations Across Languages), a dual encoder that solves two tasks: 1) image-text matching and 2) translation pair matching. By incorporating billions of translation pairs, MURAL extends ALIGN (Jia et al.)–a state-of-the-art dual encoder learned from 1.8 billion noisy image-text pairs. When using the same encoders, MURAL’s performance matches or exceeds ALIGN’s cross-modal retrieval performance on well-resourced languages across several datasets. More importantly, it considerably improves performance on under-resourced languages, showing that text-text learning can overcome a paucity of image-caption examples for these languages. On the Wikipedia Image-Text dataset, for example, MURAL-base improves zero-shot mean recall by 8.1% on average for eight under-resourced languages and by 6.8% on average when fine-tuning. We additionally show that MURAL’s text representations cluster not only with respect to genealogical connections but also based on areal linguistics, such as the Balkan Sprachbund.

pdf bib
Neural Retrieval for Question Answering with Cross-Attention Supervised Data Augmentation
Yinfei Yang | Ning Jin | Kuo Lin | Mandy Guo | Daniel Cer
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Early fusion models with cross-attention have shown better-than-human performance on some question answer benchmarks, while it is a poor fit for retrieval since it prevents pre-computation of the answer representations. We present a supervised data mining method using an accurate early fusion model to improve the training of an efficient late fusion retrieval model. We first train an accurate classification model with cross-attention between questions and answers. The cross-attention model is then used to annotate additional passages in order to generate weighted training examples for a neural retrieval model. The resulting retrieval model with additional data significantly outperforms retrieval models directly trained with gold annotations on Precision at N (P@N) and Mean Reciprocal Rank (MRR).

pdf bib
Zero-shot Neural Passage Retrieval via Domain-targeted Synthetic Question Generation
Ji Ma | Ivan Korotkov | Yinfei Yang | Keith Hall | Ryan McDonald
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

A major obstacle to the wide-spread adoption of neural retrieval models is that they require large supervised training sets to surpass traditional term-based techniques, which are constructed from raw corpora. In this paper, we propose an approach to zero-shot learning for passage retrieval that uses synthetic question generation to close this gap. The question generation system is trained on general domain data, but is applied to documents in the targeted domain. This allows us to create arbitrarily large, yet noisy, question-passage relevance pairs that are domain specific. Furthermore, when this is coupled with a simple hybrid term-neural model, first-stage retrieval performance can be improved further. Empirically, we show that this is an effective strategy for building neural passage retrieval models in the absence of large training corpora. Depending on the domain, this technique can even approach the accuracy of supervised models.

pdf bib
Crisscrossed Captions: Extended Intramodal and Intermodal Semantic Similarity Judgments for MS-COCO
Zarana Parekh | Jason Baldridge | Daniel Cer | Austin Waters | Yinfei Yang
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

By supporting multi-modal retrieval training and evaluation, image captioning datasets have spurred remarkable progress on representation learning. Unfortunately, datasets have limited cross-modal associations: images are not paired with other images, captions are only paired with other captions of the same image, there are no negative associations and there are missing positive cross-modal associations. This undermines research into how inter-modality learning impacts intra-modality tasks. We address this gap with Crisscrossed Captions (CxC), an extension of the MS-COCO dataset with human semantic similarity judgments for 267,095 intra- and inter-modality pairs. We report baseline results on CxC for strong existing unimodal and multimodal models. We also evaluate a multitask dual encoder trained on both image-caption and caption-caption pairs that crucially demonstrates CxC’s value for measuring the influence of intra- and inter-modality learning.


pdf bib
Learning a Multi-Domain Curriculum for Neural Machine Translation
Wei Wang | Ye Tian | Jiquan Ngiam | Yinfei Yang | Isaac Caswell | Zarana Parekh
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Most data selection research in machine translation focuses on improving a single domain. We perform data selection for multiple domains at once. This is achieved by carefully introducing instance-level domain-relevance features and automatically constructing a training curriculum to gradually concentrate on multi-domain relevant and noise-reduced data batches. Both the choice of features and the use of curriculum are crucial for balancing and improving all domains, including out-of-domain. In large-scale experiments, the multi-domain curriculum simultaneously reaches or outperforms the individual performance and brings solid gains over no-curriculum training.

pdf bib
Multilingual Universal Sentence Encoder for Semantic Retrieval
Yinfei Yang | Daniel Cer | Amin Ahmad | Mandy Guo | Jax Law | Noah Constant | Gustavo Hernandez Abrego | Steve Yuan | Chris Tar | Yun-hsuan Sung | Brian Strope | Ray Kurzweil
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

We present easy-to-use retrieval focused multilingual sentence embedding models, made available on TensorFlow Hub. The models embed text from 16 languages into a shared semantic space using a multi-task trained dual-encoder that learns tied cross-lingual representations via translation bridge tasks (Chidambaram et al., 2018). The models achieve a new state-of-the-art in performance on monolingual and cross-lingual semantic retrieval (SR). Competitive performance is obtained on the related tasks of translation pair bitext retrieval (BR) and retrieval question answering (ReQA). On transfer learning tasks, our multilingual embeddings approach, and in some cases exceed, the performance of English only sentence embeddings.

pdf bib
LAReQA: Language-Agnostic Answer Retrieval from a Multilingual Pool
Uma Roy | Noah Constant | Rami Al-Rfou | Aditya Barua | Aaron Phillips | Yinfei Yang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We present LAReQA, a challenging new benchmark for language-agnostic answer retrieval from a multilingual candidate pool. Unlike previous cross-lingual tasks, LAReQA tests for “strong” cross-lingual alignment, requiring semantically related cross-language pairs to be closer in representation space than unrelated same-language pairs. This level of alignment is important for the practical task of cross-lingual information retrieval. Building on multilingual BERT (mBERT), we study different strategies for achieving strong alignment. We find that augmenting training data via machine translation is effective, and improves significantly over using mBERT out-of-the-box. Interestingly, model performance on zero-shot variants of our task that only target “weak” alignment is not predictive of performance on LAReQA. This finding underscores our claim that language-agnostic retrieval is a substantively new kind of cross-lingual evaluation, and suggests that measuring both weak and strong alignment will be important for improving cross-lingual systems going forward. We release our dataset and evaluation code at https://github.com/google-research-datasets/lareqa.

pdf bib
Self-Supervised Learning for Pairwise Data Refinement
Gustavo Hernandez Abrego | Bowen Liang | Wei Wang | Zarana Parekh | Yinfei Yang | Yunhsuan Sung
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

Pairwise data automatically constructed from weakly supervised signals has been widely used for training deep learning models. Pairwise datasets such as parallel texts can have uneven quality levels overall, but usually contain data subsets that are more useful as learning examples. We present two methods to refine data that are aimed to obtain that kind of subsets in a self-supervised way. Our methods are based on iteratively training dual-encoder models to compute similarity scores. We evaluate our methods on de-noising parallel texts and training neural machine translation models. We find that: (i) The self-supervised refinement achieves most machine translation gains in the first iteration, but following iterations further improve its intrinsic evaluation. (ii) Machine translations can improve the de-noising performance when combined with selection steps. (iii) Our methods are able to reach the performance of a supervised method. Being entirely self-supervised, our methods are well-suited to handle pairwise data without the need of prior knowledge or human annotations.


pdf bib
Predicting Annotation Difficulty to Improve Task Routing and Model Performance for Biomedical Information Extraction
Yinfei Yang | Oshin Agarwal | Chris Tar | Byron C. Wallace | Ani Nenkova
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Modern NLP systems require high-quality annotated data. For specialized domains, expert annotations may be prohibitively expensive; the alternative is to rely on crowdsourcing to reduce costs at the risk of introducing noise. In this paper we demonstrate that directly modeling instance difficulty can be used to improve model performance and to route instances to appropriate annotators. Our difficulty prediction model combines two learned representations: a ‘universal’ encoder trained on out of domain data, and a task-specific encoder. Experiments on a complex biomedical information extraction task using expert and lay annotators show that: (i) simply excluding from the training data instances predicted to be difficult yields a small boost in performance; (ii) using difficulty scores to weight instances during training provides further, consistent gains; (iii) assigning instances predicted to be difficult to domain experts is an effective strategy for task routing. Further, our experiments confirm the expectation that for such domain-specific tasks expert annotations are of much higher quality and preferable to obtain if practical and that augmenting small amounts of expert data with a larger set of lay annotations leads to further improvements in model performance.

pdf bib
PAWS-X: A Cross-lingual Adversarial Dataset for Paraphrase Identification
Yinfei Yang | Yuan Zhang | Chris Tar | Jason Baldridge
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Most existing work on adversarial data generation focuses on English. For example, PAWS (Paraphrase Adversaries from Word Scrambling) consists of challenging English paraphrase identification pairs from Wikipedia and Quora. We remedy this gap with PAWS-X, a new dataset of 23,659 human translated PAWS evaluation pairs in six typologically distinct languages: French, Spanish, German, Chinese, Japanese, and Korean. We provide baseline numbers for three models with different capacity to capture non-local context and sentence structure, and using different multilingual training and evaluation regimes. Multilingual BERT fine-tuned on PAWS English plus machine-translated data performs the best, with a range of 83.1-90.8 accuracy across the non-English languages and an average accuracy gain of 23% over the next best model. PAWS-X shows the effectiveness of deep, multilingual pre-training while also leaving considerable headroom as a new challenge to drive multilingual research that better captures structure and contextual information.

pdf bib
ReQA: An Evaluation for End-to-End Answer Retrieval Models
Amin Ahmad | Noah Constant | Yinfei Yang | Daniel Cer
Proceedings of the 2nd Workshop on Machine Reading for Question Answering

Popular QA benchmarks like SQuAD have driven progress on the task of identifying answer spans within a specific passage, with models now surpassing human performance. However, retrieving relevant answers from a huge corpus of documents is still a challenging problem, and places different requirements on the model architecture. There is growing interest in developing scalable answer retrieval models trained end-to-end, bypassing the typical document retrieval step. In this paper, we introduce Retrieval Question-Answering (ReQA), a benchmark for evaluating large-scale sentence-level answer retrieval models. We establish baselines using both neural encoding models as well as classical information retrieval techniques. We release our evaluation code to encourage further work on this challenging task.

pdf bib
Learning Cross-Lingual Sentence Representations via a Multi-task Dual-Encoder Model
Muthu Chidambaram | Yinfei Yang | Daniel Cer | Steve Yuan | Yunhsuan Sung | Brian Strope | Ray Kurzweil
Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)

The scarcity of labeled training data across many languages is a significant roadblock for multilingual neural language processing. We approach the lack of in-language training data using sentence embeddings that map text written in different languages, but with similar meanings, to nearby embedding space representations. The representations are produced using a dual-encoder based model trained to maximize the representational similarity between sentence pairs drawn from parallel data. The representations are enhanced using multitask training and unsupervised monolingual corpora. The effectiveness of our multilingual sentence embeddings are assessed on a comprehensive collection of monolingual, cross-lingual, and zero-shot/few-shot learning tasks.

pdf bib
Hierarchical Document Encoder for Parallel Corpus Mining
Mandy Guo | Yinfei Yang | Keith Stevens | Daniel Cer | Heming Ge | Yun-hsuan Sung | Brian Strope | Ray Kurzweil
Proceedings of the Fourth Conference on Machine Translation (Volume 1: Research Papers)

We explore using multilingual document embeddings for nearest neighbor mining of parallel data. Three document-level representations are investigated: (i) document embeddings generated by simply averaging multilingual sentence embeddings; (ii) a neural bag-of-words (BoW) document encoding model; (iii) a hierarchical multilingual document encoder (HiDE) that builds on our sentence-level model. The results show document embeddings derived from sentence-level averaging are surprisingly effective for clean datasets, but suggest models trained hierarchically at the document-level are more effective on noisy data. Analysis experiments demonstrate our hierarchical models are very robust to variations in the underlying sentence embedding quality. Using document embeddings trained with HiDE achieves the state-of-the-art on United Nations (UN) parallel document mining, 94.9% P@1 for en-fr and 97.3% P@1 for en-es.


pdf bib
Learning Semantic Textual Similarity from Conversations
Yinfei Yang | Steve Yuan | Daniel Cer | Sheng-yi Kong | Noah Constant | Petr Pilar | Heming Ge | Yun-Hsuan Sung | Brian Strope | Ray Kurzweil
Proceedings of The Third Workshop on Representation Learning for NLP

We present a novel approach to learn representations for sentence-level semantic similarity using conversational data. Our method trains an unsupervised model to predict conversational responses. The resulting sentence embeddings perform well on the Semantic Textual Similarity (STS) Benchmark and SemEval 2017’s Community Question Answering (CQA) question similarity subtask. Performance is further improved by introducing multitask training, combining conversational response prediction and natural language inference. Extensive experiments show the proposed model achieves the best performance among all neural models on the STS Benchmark and is competitive with the state-of-the-art feature engineered and mixed systems for both tasks.

pdf bib
Effective Parallel Corpus Mining using Bilingual Sentence Embeddings
Mandy Guo | Qinlan Shen | Yinfei Yang | Heming Ge | Daniel Cer | Gustavo Hernandez Abrego | Keith Stevens | Noah Constant | Yun-Hsuan Sung | Brian Strope | Ray Kurzweil
Proceedings of the Third Conference on Machine Translation: Research Papers

This paper presents an effective approach for parallel corpus mining using bilingual sentence embeddings. Our embedding models are trained to produce similar representations exclusively for bilingual sentence pairs that are translations of each other. This is achieved using a novel training method that introduces hard negatives consisting of sentences that are not translations but have some degree of semantic similarity. The quality of the resulting embeddings are evaluated on parallel corpus reconstruction and by assessing machine translation systems trained on gold vs. mined sentence pairs. We find that the sentence embeddings can be used to reconstruct the United Nations Parallel Corpus (Ziemski et al., 2016) at the sentence-level with a precision of 48.9% for en-fr and 54.9% for en-es. When adapted to document-level matching, we achieve a parallel document matching accuracy that is comparable to the significantly more computationally intensive approach of Uszkoreit et al. (2010). Using reconstructed parallel data, we are able to train NMT models that perform nearly as well as models trained on the original data (within 1-2 BLEU).

pdf bib
Universal Sentence Encoder for English
Daniel Cer | Yinfei Yang | Sheng-yi Kong | Nan Hua | Nicole Limtiaco | Rhomni St. John | Noah Constant | Mario Guajardo-Cespedes | Steve Yuan | Chris Tar | Brian Strope | Ray Kurzweil
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

We present easy-to-use TensorFlow Hub sentence embedding models having good task transfer performance. Model variants allow for trade-offs between accuracy and compute resources. We report the relationship between model complexity, resources, and transfer performance. Comparisons are made with baselines without transfer learning and to baselines that incorporate word-level transfer. Transfer learning using sentence-level embeddings is shown to outperform models without transfer learning and often those that use only word-level transfer. We show good transfer task performance with minimal training data and obtain encouraging results on word embedding association tests (WEAT) of model bias.

pdf bib
A Corpus with Multi-Level Annotations of Patients, Interventions and Outcomes to Support Language Processing for Medical Literature
Benjamin Nye | Junyi Jessy Li | Roma Patel | Yinfei Yang | Iain Marshall | Ani Nenkova | Byron Wallace
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present a corpus of 5,000 richly annotated abstracts of medical articles describing clinical randomized controlled trials. Annotations include demarcations of text spans that describe the Patient population enrolled, the Interventions studied and to what they were Compared, and the Outcomes measured (the ‘PICO’ elements). These spans are further annotated at a more granular level, e.g., individual interventions within them are marked and mapped onto a structured medical vocabulary. We acquired annotations from a diverse set of workers with varying levels of expertise and cost. We describe our data collection process and the corpus itself in detail. We then outline a set of challenging NLP tasks that would aid searching of the medical literature and the practice of evidence-based medicine.

pdf bib
Syntactic Patterns Improve Information Extraction for Medical Search
Roma Patel | Yinfei Yang | Iain Marshall | Ani Nenkova | Byron Wallace
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

Medical professionals search the published literature by specifying the type of patients, the medical intervention(s) and the outcome measure(s) of interest. In this paper we demonstrate how features encoding syntactic patterns improve the performance of state-of-the-art sequence tagging models (both neural and linear) for information extraction of these medically relevant categories. We present an analysis of the type of patterns exploited and of the semantic space induced for these, i.e., the distributed representations learned for identified multi-token patterns. We show that these learned representations differ substantially from those of the constituent unigrams, suggesting that the patterns capture contextual information that is otherwise lost.

pdf bib
Cross-Domain Review Helpfulness Prediction Based on Convolutional Neural Networks with Auxiliary Domain Discriminators
Cen Chen | Yinfei Yang | Jun Zhou | Xiaolong Li | Forrest Sheng Bao
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

With the growing amount of reviews in e-commerce websites, it is critical to assess the helpfulness of reviews and recommend them accordingly to consumers. Recent studies on review helpfulness require plenty of labeled samples for each domain/category of interests. However, such an approach based on close-world assumption is not always practical, especially for domains with limited reviews or the “out-of-vocabulary” problem. Therefore, we propose a convolutional neural network (CNN) based model which leverages both word-level and character-based representations. To transfer knowledge between domains, we further extend our model to jointly model different domains with auxiliary domain discriminators. On the Amazon product review dataset, our approach significantly outperforms the state of the art in terms of both accuracy and cross-domain robustness.


pdf bib
Aspect Extraction from Product Reviews Using Category Hierarchy Information
Yinfei Yang | Cen Chen | Minghui Qiu | Forrest Bao
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers

Aspect extraction abstracts the common properties of objects from corpora discussing them, such as reviews of products. Recent work on aspect extraction is leveraging the hierarchical relationship between products and their categories. However, such effort focuses on the aspects of child categories but ignores those from parent categories. Hence, we propose an LDA-based generative topic model inducing the two-layer categorical information (CAT-LDA), to balance the aspects of both a parent category and its child categories. Our hypothesis is that child categories inherit aspects from parent categories, controlled by the hierarchy between them. Experimental results on 5 categories of Amazon.com products show that both common aspects of parent category and the individual aspects of sub-categories can be extracted to align well with the common sense. We further evaluate the manually extracted aspects of 16 products, resulting in an average hit rate of 79.10%.

pdf bib
Detecting (Un)Important Content for Single-Document News Summarization
Yinfei Yang | Forrest Bao | Ani Nenkova
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers

We present a robust approach for detecting intrinsic sentence importance in news, by training on two corpora of document-summary pairs. When used for single-document summarization, our approach, combined with the “beginning of document” heuristic, outperforms a state-of-the-art summarizer and the beginning-of-article baseline in both automatic and manual evaluations. These results represent an important advance because in the absence of cross-document repetition, single document summarizers for news have not been able to consistently outperform the strong beginning-of-article baseline.


pdf bib
Semantic Analysis and Helpfulness Prediction of Text for Online Product Reviews
Yinfei Yang | Yaowei Yan | Minghui Qiu | Forrest Bao
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)


pdf bib
Linking Named Entities to Any Database
Avirup Sil | Ernest Cronin | Penghai Nie | Yinfei Yang | Ana-Maria Popescu | Alexander Yates
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning