Ying Li


2022

pdf bib
Semi-supervised Domain Adaptation for Dependency Parsing with Dynamic Matching Network
Ying Li | Shuaike Li | Min Zhang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Supervised parsing models have achieved impressive results on in-domain texts. However, their performances drop drastically on out-of-domain texts due to the data distribution shift. The shared-private model has shown its promising advantages for alleviating this problem via feature separation, whereas prior works pay more attention to enhance shared features but neglect the in-depth relevance of specific ones. To address this issue, we for the first time apply a dynamic matching network on the shared-private model for semi-supervised cross-domain dependency parsing. Meanwhile, considering the scarcity of target-domain labeled data, we leverage unlabeled data from two aspects, i.e., designing a new training strategy to improve the capability of the dynamic matching network and fine-tuning BERT to obtain domain-related contextualized representations. Experiments on benchmark datasets show that our proposed model consistently outperforms various baselines, leading to new state-of-the-art results on all domains. Detailed analysis on different matching strategies demonstrates that it is essential to learn suitable matching weights to emphasize useful features and ignore useless or even harmful ones. Besides, our proposed model can be directly extended to multi-source domain adaptation and achieves best performances among various baselines, further verifying the effectiveness and robustness.

pdf bib
KSAM: Infusing Multi-Source Knowledge into Dialogue Generation via Knowledge Source Aware Multi-Head Decoding
Sixing Wu | Ying Li | Dawei Zhang | Zhonghai Wu
Findings of the Association for Computational Linguistics: ACL 2022

Knowledge-enhanced methods have bridged the gap between human beings and machines in generating dialogue responses. However, most previous works solely seek knowledge from a single source, and thus they often fail to obtain available knowledge because of the insufficient coverage of a single knowledge source. To this end, infusing knowledge from multiple sources becomes a trend. This paper proposes a novel approach Knowledge Source Aware Multi-Head Decoding, KSAM, to infuse multi-source knowledge into dialogue generation more efficiently. Rather than following the traditional single decoder paradigm, KSAM uses multiple independent source-aware decoder heads to alleviate three challenging problems in infusing multi-source knowledge, namely, the diversity among different knowledge sources, the indefinite knowledge alignment issue, and the insufficient flexibility/scalability in knowledge usage. Experiments on a Chinese multi-source knowledge-aligned dataset demonstrate the superior performance of KSAM against various competitive approaches.

2021

pdf bib
More is Better: Enhancing Open-Domain Dialogue Generation via Multi-Source Heterogeneous Knowledge
Sixing Wu | Ying Li | Minghui Wang | Dawei Zhang | Yang Zhou | Zhonghai Wu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Despite achieving remarkable performance, previous knowledge-enhanced works usually only use a single-source homogeneous knowledge base of limited knowledge coverage. Thus, they often degenerate into traditional methods because not all dialogues can be linked with knowledge entries. This paper proposes a novel dialogue generation model, MSKE-Dialog, to solve this issue with three unique advantages: (1) Rather than only one, MSKE-Dialog can simultaneously leverage multiple heterogeneous knowledge sources (it includes but is not limited to commonsense knowledge facts, text knowledge, infobox knowledge) to improve the knowledge coverage; (2) To avoid the topic conflict among the context and different knowledge sources, we propose a Multi-Reference Selection to better select context/knowledge; (3) We propose a Multi-Reference Generation to generate informative responses by referring to multiple generation references at the same time. Extensive evaluations on a Chinese dataset show the superior performance of this work against various state-of-the-art approaches. To our best knowledge, this work is the first to use the multi-source heterogeneous knowledge in the open-domain knowledge-enhanced dialogue generation.

pdf bib
APGN: Adversarial and Parameter Generation Networks for Multi-Source Cross-Domain Dependency Parsing
Ying Li | Meishan Zhang | Zhenghua Li | Min Zhang | Zhefeng Wang | Baoxing Huai | Nicholas Jing Yuan
Findings of the Association for Computational Linguistics: EMNLP 2021

Thanks to the strong representation learning capability of deep learning, especially pre-training techniques with language model loss, dependency parsing has achieved great performance boost in the in-domain scenario with abundant labeled training data for target domains. However, the parsing community has to face the more realistic setting where the parsing performance drops drastically when labeled data only exists for several fixed out-domains. In this work, we propose a novel model for multi-source cross-domain dependency parsing. The model consists of two components, i.e., a parameter generation network for distinguishing domain-specific features, and an adversarial network for learning domain-invariant representations. Experiments on a recently released NLPCC-2019 dataset for multi-domain dependency parsing show that our model can consistently improve cross-domain parsing performance by about 2 points in averaged labeled attachment accuracy (LAS) over strong BERT-enhanced baselines. Detailed analysis is conducted to gain more insights on contributions of the two components.

2020

pdf bib
Semi-supervised Domain Adaptation for Dependency Parsing via Improved Contextualized Word Representations
Ying Li | Zhenghua Li | Min Zhang
Proceedings of the 28th International Conference on Computational Linguistics

In recent years, parsing performance is dramatically improved on in-domain texts thanks to the rapid progress of deep neural network models. The major challenge for current parsing research is to improve parsing performance on out-of-domain texts that are very different from the in-domain training data when there is only a small-scale out-domain labeled data. To deal with this problem, we propose to improve the contextualized word representations via adversarial learning and fine-tuning BERT processes. Concretely, we apply adversarial learning to three representative semi-supervised domain adaption methods, i.e., direct concatenation (CON), feature augmentation (FA), and domain embedding (DE) with two useful strategies, i.e., fused target-domain word representations and orthogonality constraints, thus enabling to model more pure yet effective domain-specific and domain-invariant representations. Simultaneously, we utilize a large-scale target-domain unlabeled data to fine-tune BERT with only the language model loss, thus obtaining reliable contextualized word representations that benefit for the cross-domain dependency parsing. Experiments on a benchmark dataset show that our proposed adversarial approaches achieve consistent improvement, and fine-tuning BERT further boosts parsing accuracy by a large margin. Our single model achieves the same state-of-the-art performance as the top submitted system in the NLPCC-2019 shared task, which uses ensemble models and BERT.

pdf bib
Diverse and Informative Dialogue Generation with Context-Specific Commonsense Knowledge Awareness
Sixing Wu | Ying Li | Dawei Zhang | Yang Zhou | Zhonghai Wu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Generative dialogue systems tend to produce generic responses, which often leads to boring conversations. For alleviating this issue, Recent studies proposed to retrieve and introduce knowledge facts from knowledge graphs. While this paradigm works to a certain extent, it usually retrieves knowledge facts only based on the entity word itself, without considering the specific dialogue context. Thus, the introduction of the context-irrelevant knowledge facts can impact the quality of generations. To this end, this paper proposes a novel commonsense knowledge-aware dialogue generation model, ConKADI. We design a Felicitous Fact mechanism to help the model focus on the knowledge facts that are highly relevant to the context; furthermore, two techniques, Context-Knowledge Fusion and Flexible Mode Fusion are proposed to facilitate the integration of the knowledge in the ConKADI. We collect and build a large-scale Chinese dataset aligned with the commonsense knowledge for dialogue generation. Extensive evaluations over both an open-released English dataset and our Chinese dataset demonstrate that our approach ConKADI outperforms the state-of-the-art approach CCM, in most experiments.

pdf bib
Neural-DINF: A Neural Network based Framework for Measuring Document Influence
Jie Tan | Changlin Yang | Ying Li | Siliang Tang | Chen Huang | Yueting Zhuang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Measuring the scholarly impact of a document without citations is an important and challenging problem. Existing approaches such as Document Influence Model (DIM) are based on dynamic topic models, which only consider the word frequency change. In this paper, we use both frequency changes and word semantic shifts to measure document influence by developing a neural network framework. Our model has three steps. Firstly, we train the word embeddings for different time periods. Subsequently, we propose an unsupervised method to align vectors for different time periods. Finally, we compute the influence value of documents. Our experimental results show that our model outperforms DIM.

pdf bib
Multi-view Classification Model for Knowledge Graph Completion
Wenbin Jiang | Mengfei Guo | Yufeng Chen | Ying Li | Jinan Xu | Yajuan Lyu | Yong Zhu
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

Most previous work on knowledge graph completion conducted single-view prediction or calculation for candidate triple evaluation, based only on the content information of the candidate triples. This paper describes a novel multi-view classification model for knowledge graph completion, where multiple classification views are performed based on both content and context information for candidate triple evaluation. Each classification view evaluates the validity of a candidate triple from a specific viewpoint, based on the content information inside the candidate triple and the context information nearby the triple. These classification views are implemented by a unified neural network and the classification predictions are weightedly integrated to obtain the final evaluation. Experiments show that, the multi-view model brings very significant improvements over previous methods, and achieves the new state-of-the-art on two representative datasets. We believe that, the flexibility and the scalability of the multi-view classification model facilitates the introduction of additional information and resources for better performance.

pdf bib
Improving Knowledge-Aware Dialogue Response Generation by Using Human-Written Prototype Dialogues
Sixing Wu | Ying Li | Dawei Zhang | Zhonghai Wu
Findings of the Association for Computational Linguistics: EMNLP 2020

Incorporating commonsense knowledge can alleviate the issue of generating generic responses in open-domain generative dialogue systems. However, selecting knowledge facts for the dialogue context is still a challenge. The widely used approach Entity Name Matching always retrieves irrelevant facts from the view of local entity words. This paper proposes a novel knowledge selection approach, Prototype-KR, and a knowledge-aware generative model, Prototype-KRG. Given a query, our approach first retrieves a set of prototype dialogues that are relevant to the query. We find knowledge facts used in prototype dialogues usually are highly relevant to the current query; thus, Prototype-KR ranks such knowledge facts based on the semantic similarity and then selects the most appropriate facts. Subsequently, Prototype-KRG can generate an informative response using the selected knowledge facts. Experiments demonstrate that our approach has achieved notable improvements on the most metrics, compared to generative baselines. Meanwhile, compared to IR(Retrieval)-based baselines, responses generated by our approach are more relevant to the context and have comparable informativeness.

2018

pdf bib
HL-EncDec: A Hybrid-Level Encoder-Decoder for Neural Response Generation
Sixing Wu | Dawei Zhang | Ying Li | Xing Xie | Zhonghai Wu
Proceedings of the 27th International Conference on Computational Linguistics

Recent years have witnessed a surge of interest on response generation for neural conversation systems. Most existing models are implemented by following the Encoder-Decoder framework and operate sentences of conversations at word-level. The word-level model is suffering from the Unknown Words Issue and the Preference Issue, which seriously impact the quality of generated responses, for example, generated responses may become irrelevant or too general (i.e. safe responses). To address these issues, this paper proposes a hybrid-level Encoder-Decoder model (HL-EncDec), which not only utilizes the word-level features but also character-level features. We conduct several experiments to evaluate HL-EncDec on a Chinese corpus, experimental results show our model significantly outperforms other non-word-level models in automatic metrics and human annotations and is able to generate more informative responses. We also conduct experiments with a small-scale English dataset to show the generalization ability.

2014

pdf bib
Language Modeling with Functional Head Constraint for Code Switching Speech Recognition
Ying Li | Pascale Fung
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)

2012

pdf bib
Code-Switch Language Model with Inversion Constraints for Mixed Language Speech Recognition
Ying Li | Pascale Fung
Proceedings of COLING 2012

pdf bib
Using English Acoustic Models for Hindi Automatic Speech Recognition
Anik Dey | Ying Li | Pascale Fung
Proceedings of the 3rd Workshop on South and Southeast Asian Natural Language Processing

pdf bib
A Mandarin-English Code-Switching Corpus
Ying Li | Yue Yu | Pascale Fung
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)

Generally the existing monolingual corpora are not suitable for large vocabulary continuous speech recognition (LVCSR) of code-switching speech. The motivation of this paper is to study the rules and constraints code-switching follows and design a corpus for code-switching LVCSR task. This paper presents the development of a Mandarin-English code-switching corpus. This corpus consists of four parts: 1) conversational meeting speech and its data; 2) project meeting speech data; 3) student interviews speech; 4) text data of on-line news. The speech was transcribed by an annotator and verified by Mandarin-English bilingual speakers manually. We propose an approach for automatically downloading from the web text data that contains code-switching. The corpus includes both intra-sentential code-switching (switch in the middle of a sentence) and inter-sentential code-switching (switch at the end of the sentence). The distribution of part-of-speech (POS) tags and code-switching reasons are reported.

2006

pdf bib
Extracting Salient Keywords from Instructional Videos Using Joint Text, Audio and Visual Cues
Youngja Park | Ying Li
Proceedings of the Human Language Technology Conference of the NAACL, Companion Volume: Short Papers