Although pre-trained language models (PLMs) have been widely used in natural language understandings (NLU), they are still exposed to fairness issues. Most existing extrinsic debiasing methods rely on manually curated word lists for each sensitive groups to modify training data or to add regular constraints. However, these word lists are often limited by length and scope, resulting in the degradation performance of extrinsic bias mitigation. To address the aforementioned issues, we propose a **C**ontinuous **P**rompts **A**djustment **D**ebiasing method (CPAD), which generates continuous token lists from the entire vocabulary space and uses them to bridge the gap between outputs and targets in fairness learning process. Specifically, CPAD encapsulates fine-tuning objective and debiasing objectives into several independent prompts. To avoid the limitation of manual word lists, in fairness learning phase, we extract outputs from the entire vocabulary space via fine-tuned PLM. Then, we aggregate the outputs from the same sensitive group as continuous token lists to map the outputs into protected attribute labels. Finally, after we learn the debiasing prompts in the perspective of adversarial learning, we improve fairness by adjusting continuous prompts at model inference time. Through extensive experiments on three NLU tasks, we evaluate the debiasing performance from the perspectives of group fairness and fairness through unawareness. The experimental results show that CPAD outperforms all baselines in term of single and two-attributes debiasing performance.
Human-like social bias of pre-trained language models (PLMs) on downstream tasks have attracted increasing attention. The potential flaws in the training data are the main factor that causes unfairness in PLMs. Existing data-centric debiasing strategies mainly leverage explicit bias words (defined as sensitive attribute words specific to demographic groups) for counterfactual data augmentation to balance the training data. However, they lack consideration of implicit bias words potentially associated with explicit bias words in complex distribution data, which indirectly harms the fairness of PLMs. To this end, we propose a **Data**-Centric **Debias**ing method (named Data-Debias), which uses an explainability method to search for implicit bias words to assist in debiasing PLMs. Specifically, we compute the feature attributions of all tokens using the Integrated Gradients method, and then treat the tokens that have a large impact on the model’s decision as implicit bias words. To make the search results more precise, we iteratively train a biased model to amplify the bias with each iteration. Finally, we use the implicit bias words searched in the last iteration to assist in debiasing PLMs. Extensive experimental results on multiple PLMs debiasing on three different classification tasks demonstrate that Data-Debias achieves state-of-the-art debiasing performance and strong generalization while maintaining predictive abilities.
As the representation capability of Pre-trained Language Models (PLMs) improve, there is growing concern that they will inherit social biases from unprocessed corpora. Most previous debiasing techniques used Counterfactual Data Augmentation (CDA) to balance the training corpus. However, CDA slightly modifies the original corpus, limiting the representation distance between different demographic groups to a narrow range. As a result, the debiasing model easily fits the differences between counterfactual pairs, which affects its debiasing performance with limited text resources. In this paper, we propose an adversarial training-inspired two-stage debiasing model using Contrastive learning with Continuous Prompt Augmentation (named CCPA) to mitigate social biases in PLMs’ encoding. In the first stage, we propose a data augmentation method based on continuous prompt tuning to push farther the representation distance between sample pairs along different demographic groups. In the second stage, we utilize contrastive learning to pull closer the representation distance between the augmented sample pairs and then fine-tune PLMs’ parameters to get debiased encoding. Our approach guides the model to achieve stronger debiasing performance by adding difficulty to the training process. Extensive experiments show that CCPA outperforms baselines in terms of debiasing performance. Meanwhile, experimental results on the GLUE benchmark show that CCPA retains the language modeling capability of PLMs.
We present open domain dialogue generation with meta-words. A meta-word is a structured record that describes attributes of a response, and thus allows us to explicitly model the one-to-many relationship within open domain dialogues and perform response generation in an explainable and controllable manner. To incorporate meta-words into generation, we propose a novel goal-tracking memory network that formalizes meta-word expression as a goal in response generation and manages the generation process to achieve the goal with a state memory panel and a state controller. Experimental results from both automatic evaluation and human judgment on two large-scale data sets indicate that our model can significantly outperform state-of-the-art generation models in terms of response relevance, response diversity, and accuracy of meta-word expression.