Yingfa Chen


2023

pdf bib
Sub-Character Tokenization for Chinese Pretrained Language Models
Chenglei Si | Zhengyan Zhang | Yingfa Chen | Fanchao Qi | Xiaozhi Wang | Zhiyuan Liu | Yasheng Wang | Qun Liu | Maosong Sun
Transactions of the Association for Computational Linguistics, Volume 11

Tokenization is fundamental to pretrained language models (PLMs). Existing tokenization methods for Chinese PLMs typically treat each character as an indivisible token. However, they ignore the unique feature of the Chinese writing system where additional linguistic information exists below the character level, i.e., at the sub-character level. To utilize such information, we propose sub-character (SubChar for short) tokenization. Specifically, we first encode the input text by converting each Chinese character into a short sequence based on its glyph or pronunciation, and then construct the vocabulary based on the encoded text with sub-word segmentation. Experimental results show that SubChar tokenizers have two main advantages over existing tokenizers: 1) They can tokenize inputs into much shorter sequences, thus improving the computational efficiency. 2) Pronunciation-based SubChar tokenizers can encode Chinese homophones into the same transliteration sequences and produce the same tokenization output, hence being robust to homophone typos. At the same time, models trained with SubChar tokenizers perform competitively on downstream tasks. We release our code and models at https://github.com/thunlp/SubCharTokenization to facilitate future work.

pdf bib
READIN: A Chinese Multi-Task Benchmark with Realistic and Diverse Input Noises
Chenglei Si | Zhengyan Zhang | Yingfa Chen | Xiaozhi Wang | Zhiyuan Liu | Maosong Sun
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

For many real-world applications, the user-generated inputs usually contain various noises due to speech recognition errors caused by linguistic variations or typographical errors (typos). Thus, it is crucial to test model performance on data with realistic input noises to ensure robustness and fairness. However, little study has been done to construct such benchmarks for Chinese, where various language-specific input noises happen in the real world. In order to fill this important gap, we construct READIN: a Chinese multi-task benchmark with REalistic And Diverse Input Noises. READIN contains four diverse tasks and requests annotators to re-enter the original test data with two commonly used Chinese input methods: Pinyin input and speech input. We designed our annotation pipeline to maximize diversity, for example by instructing the annotators to use diverse input method editors (IMEs) for keyboard noises and recruiting speakers from diverse dialectical groups for speech noises. We experiment with a series of strong pretrained language models as well as robust training methods, we find that these models often suffer significant performance drops on READIN even with robustness methods like data augmentation. As the first large-scale attempt in creating a benchmark with noises geared towards user-generated inputs, we believe that READIN serves as an important complement to existing Chinese NLP benchmarks. The source code and dataset can be obtained from https://github.com/thunlp/READIN.

2022

pdf bib
BMCook: A Task-agnostic Compression Toolkit for Big Models
Zhengyan Zhang | Baitao Gong | Yingfa Chen | Xu Han | Guoyang Zeng | Weilin Zhao | Yanxu Chen | Zhiyuan Liu | Maosong Sun
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Recently, pre-trained language models (PLMs) have achieved great success on various NLP tasks and have shown a trend of exponential growth in model size. To alleviate the unaffordable computational costs brought by the size growth, model compression has been widely explored. Existing efforts have achieved promising results in compressing medium-sized models for specific tasks, while task-agnostic compression for big models with over billions of parameters is rarely studied. Task-agnostic compression can provide an efficient and versatile big model for both prompting and delta tuning, leading to a more general impact than task-specific compression. Hence, we introduce a task-agnostic compression toolkit BMCook for big models. In BMCook, we implement four representative compression methods, including quantization, pruning, distillation, and MoEfication. Developers can easily combine these methods towards better efficiency. To evaluate BMCook, we apply it to compress T5-3B (a PLM with 3 billion parameters). We achieve nearly 12x efficiency improvement while maintaining over 97% of the original T5-3B performance on three typical NLP benchmarks. Moreover, the final compressed model also significantly outperforms T5-base (a PLM with 220 million parameters), which has a similar computational cost. BMCook is publicly available at https://github.com/OpenBMB/BMCook.