Yingfeng Luo


2024

pdf bib
Exploiting Target Language Data for Neural Machine Translation Beyond Back Translation
Abudurexiti Reheman | Yingfeng Luo | Junhao Ruan | Chunliang Zhang | Anxiang Ma | Tong Xiao | JingBo Zhu
Findings of the Association for Computational Linguistics: ACL 2024

Neural Machine Translation (NMT) encounters challenges when translating in new domains and low-resource languages. To address these issues, researchers have proposed methods to integrate additional knowledge into NMT, such as translation memories (TMs). However, finding TMs that closely match the input sentence remains challenging, particularly in specific domains. On the other hand, monolingual data is widely accessible in most languages, and back-translation is seen as a promising approach for utilizing target language data. Nevertheless, it still necessitates additional training. In this paper, we introduce Pseudo-kNN-MT, a variant of k-nearest neighbor machine translation (kNN-MT) that utilizes target language data by constructing a pseudo datastore. Furthermore, we investigate the utility of large language models (LLMs) for the kNN component. Experimental results demonstrate that our approach exhibits strong domain adaptation capability in both high-resource and low-resource machine translation. Notably, LLMs are found to be beneficial for robust NMT systems.

2021

pdf bib
The NiuTrans Machine Translation Systems for WMT21
Shuhan Zhou | Tao Zhou | Binghao Wei | Yingfeng Luo | Yongyu Mu | Zefan Zhou | Chenglong Wang | Xuanjun Zhou | Chuanhao Lv | Yi Jing | Laohu Wang | Jingnan Zhang | Canan Huang | Zhongxiang Yan | Chi Hu | Bei Li | Tong Xiao | Jingbo Zhu
Proceedings of the Sixth Conference on Machine Translation

This paper describes NiuTrans neural machine translation systems of the WMT 2021 news translation tasks. We made submissions to 9 language directions, including English2Chinese, Japanese, Russian, Icelandic and English2Hausa tasks. Our primary systems are built on several effective variants of Transformer, e.g., Transformer-DLCL, ODE-Transformer. We also utilize back-translation, knowledge distillation, post-ensemble, and iterative fine-tuning techniques to enhance the model performance further.

2020

pdf bib
A Simple and Effective Approach to Robust Unsupervised Bilingual Dictionary Induction
Yanyang Li | Yingfeng Luo | Ye Lin | Quan Du | Huizhen Wang | Shujian Huang | Tong Xiao | Jingbo Zhu
Proceedings of the 28th International Conference on Computational Linguistics

Unsupervised Bilingual Dictionary Induction methods based on the initialization and the self-learning have achieved great success in similar language pairs, e.g., English-Spanish. But they still fail and have an accuracy of 0% in many distant language pairs, e.g., English-Japanese. In this work, we show that this failure results from the gap between the actual initialization performance and the minimum initialization performance for the self-learning to succeed. We propose Iterative Dimension Reduction to bridge this gap. Our experiments show that this simple method does not hamper the performance of similar language pairs and achieves an accuracy of 13.64 55.53% between English and four distant languages, i.e., Chinese, Japanese, Vietnamese and Thai.

pdf bib
The NiuTrans System for the WMT20 Quality Estimation Shared Task
Chi Hu | Hui Liu | Kai Feng | Chen Xu | Nuo Xu | Zefan Zhou | Shiqin Yan | Yingfeng Luo | Chenglong Wang | Xia Meng | Tong Xiao | Jingbo Zhu
Proceedings of the Fifth Conference on Machine Translation

This paper describes the submissions of the NiuTrans Team to the WMT 2020 Quality Estimation Shared Task. We participated in all tasks and all language pairs. We explored the combination of transfer learning, multi-task learning and model ensemble. Results on multiple tasks show that deep transformer machine translation models and multilingual pretraining methods significantly improve translation quality estimation performance. Our system achieved remarkable results in multiple level tasks, e.g., our submissions obtained the best results on all tracks in the sentence-level Direct Assessment task.