The prevalence of the COVID-19 pandemic in day-to-day life has yielded large amounts of stance detection data on social media sites, as users turn to social media to share their views regarding various issues related to the pandemic, e.g. stay at home mandates and wearing face masks when out in public. We set out to make use of this data by collecting the stance expressed by Twitter users, with respect to topics revolving around the pandemic. We annotate a new stance detection dataset, called COVID-19-Stance. Using this newly annotated dataset, we train several established stance detection models to ascertain a baseline performance for this specific task. To further improve the performance, we employ self-training and domain adaptation approaches to take advantage of large amounts of unlabeled data and existing stance detection datasets. The dataset, code, and other resources are available on GitHub.
Stance detection determines whether the author of a text is in favor of, against or neutral to a specific target and provides valuable insights into important events such as legalization of abortion. Despite significant progress on this task, one of the remaining challenges is the scarcity of annotations. Besides, most previous works focused on a hard-label training in which meaningful similarities among categories are discarded during training. To address these challenges, first, we evaluate a multi-target and a multi-dataset training settings by training one model on each dataset and datasets of different domains, respectively. We show that models can learn more universal representations with respect to targets in these settings. Second, we investigate the knowledge distillation in stance detection and observe that transferring knowledge from a teacher model to a student model can be beneficial in our proposed training settings. Moreover, we propose an Adaptive Knowledge Distillation (AKD) method that applies instance-specific temperature scaling to the teacher and student predictions. Results show that the multi-dataset model performs best on all datasets and it can be further improved by the proposed AKD, outperforming the state-of-the-art by a large margin. We publicly release our code.
The goal of stance detection is to identify whether the author of a text is in favor of, neutral or against a specific target. Despite substantial progress on this task, one of the remaining challenges is the scarcity of annotations. Data augmentation is commonly used to address annotation scarcity by generating more training samples. However, the augmented sentences that are generated by existing methods are either less diversified or inconsistent with the given target and stance label. In this paper, we formulate the data augmentation of stance detection as a conditional masked language modeling task and augment the dataset by predicting the masked word conditioned on both its context and the auxiliary sentence that contains target and label information. Moreover, we propose another simple yet effective method that generates target-aware sentence by replacing a target mention with the other. Experimental results show that our proposed methods significantly outperforms previous augmentation methods on 11 targets.
Stance detection aims to detect whether the opinion holder is in support of or against a given target. Recent works show improvements in stance detection by using either the attention mechanism or sentiment information. In this paper, we propose a multi-task framework that incorporates target-specific attention mechanism and at the same time takes sentiment classification as an auxiliary task. Moreover, we used a sentiment lexicon and constructed a stance lexicon to provide guidance for the attention layer. Experimental results show that the proposed model significantly outperforms state-of-the-art deep learning methods on the SemEval-2016 dataset.