Yingmei Guo


2020

pdf bib
Guoym at SemEval-2020 Task 8: Ensemble-based Classification of Visuo-Lingual Metaphor in Memes
Yingmei Guo | Jinfa Huang | Yanlong Dong | Mingxing Xu
Proceedings of the Fourteenth Workshop on Semantic Evaluation

In this paper, we describe our ensemble-based system designed by guoym Team for the SemEval-2020 Task 8, Memotion Analysis. In our system, we utilize five types of representation of data as input of base classifiers to extract information from different aspects. We train five base classifiers for each type of representation using five-fold cross-validation. Then the outputs of these base classifiers are combined through data-based ensemble method and feature-based ensemble method to make full use of all data and representations from different aspects. Our method achieves the performance within the top 2 ranks in the final leaderboard of Memotion Analysis among 36 Teams.

pdf bib
FERNet: Fine-grained Extraction and Reasoning Network for Emotion Recognition in Dialogues
Yingmei Guo | Zhiyong Wu | Mingxing Xu
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

Unlike non-conversation scenes, emotion recognition in dialogues (ERD) poses more complicated challenges due to its interactive nature and intricate contextual information. All present methods model historical utterances without considering the content of the target utterance. However, different parts of a historical utterance may contribute differently to emotion inference of different target utterances. Therefore we propose Fine-grained Extraction and Reasoning Network (FERNet) to generate target-specific historical utterance representations. The reasoning module effectively handles both local and global sequential dependencies to reason over context, and updates target utterance representations to more informed vectors. Experiments on two benchmarks show that our method achieves competitive performance compared with previous methods.