Yinya Huang


2024

pdf bib
CLOMO: Counterfactual Logical Modification with Large Language Models
Yinya Huang | Ruixin Hong | Hongming Zhang | Wei Shao | Zhicheng Yang | Dong Yu | Changshui Zhang | Xiaodan Liang | Linqi Song
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this study, we delve into the realm of counterfactual reasoning capabilities of large language models (LLMs). Our primary objective is to cultivate the counterfactual thought processes within LLMs and rigorously assess these processes for their validity. Specifically, we introduce a novel task, Counterfactual Logical Modification (CLOMO), and a high-quality human-annotated benchmark. In this task, LLMs must adeptly alter a given argumentative text to uphold a predetermined logical relationship. To effectively evaluate a generation model’s counterfactual capabilities, we propose an innovative evaluation metric, the decomposed Self-Evaluation Score (SES) to directly evaluate the natural language output of LLMs instead of modeling the task as a multiple-choice problem. Analysis shows that the proposed automatic metric aligns well with human preference. Our experimental results show that while LLMs demonstrate a notable capacity for logical counterfactual thinking, there remains a discernible gap between their current abilities and human performance. Code and data are available at https://github.com/Eleanor-H/CLOMO.

pdf bib
ATG: Benchmarking Automated Theorem Generation for Generative Language Models
Xiaohan Lin | Qingxing Cao | Yinya Huang | Zhicheng Yang | Zhengying Liu | Zhenguo Li | Xiaodan Liang
Findings of the Association for Computational Linguistics: NAACL 2024

Humans can develop new theorems to explore broader and more complex mathematical results.While current generative language models (LMs) have achieved significant improvement in automatically proving theorems, their ability to generate new or reusable theorems is still under-explored. Without the new theorems, current LMs struggle to prove harder theorems that are distant from the given hypotheses with the exponentially growing search space.More advanced theorem proving is if an agent (for instance, a generative LM) can leverage its creativity to generate new but also reasonable theorems that properly substitute part of a proof and also be saved as reusable knowledge for future theorem proving.Therefore, this paper proposes an Automated Theorem Generation (ATG) benchmark that evaluates whether an agent can automatically generate valuable (and possibly brand new) theorems that are applicable for downstream theorem proving as reusable knowledge. Specifically, we construct the ATG benchmark by splitting the Metamath library into three sets: axioms, library, and problem based on their proving depth.We conduct extensive experiments to investigate whether current LMs can generate theorems in the library and benefit the problem theorems proving. The results demonstrate that high-quality ATG data facilitates models’ performances on downstream ATP. However, there is still room for current LMs to develop better ATG and generate more advanced and human-like theorems. We hope the new ATG challenge can shed some light on advanced complex theorem proving.

pdf bib
AlignedCoT: Prompting Large Language Models via Native-Speaking Demonstrations
Zhicheng Yang | Yinya Huang | Jing Xiong | Liang Feng | Xiaodan Liang | Yiwei Wang | Jing Tang
Findings of the Association for Computational Linguistics: EMNLP 2024

Large Language Models prompting, such as using in-context demonstrations, is a mainstream technique for invoking LLMs to perform high-performance and solid complex reasoning (e.g., mathematical reasoning, commonsense reasoning), and has the potential for further human-machine collaborative scientific findings. However, current LLMs are delicate and elusive in prompt words and styles. And there is an unseen gap between LLM understanding and human-written prompts. This paper introduces AlignedCoT, an LLM-acquainted prompting technique that includes proficient “native-speaking” in in-context learning for the LLMs. Specifically, it achieves consistent and correct step-wise prompts in zero-shot scenarios by progressively probing, refining, and formatting the LLM chain of thoughts so that free from handcrafted few-shot demonstrations while maintaining the prompt quality. We conduct experiments on mathematical reasoning and commonsense reasoning. We find that LLMs with AlignedCoT perform significantly superior to them with human-crafted demonstrations. We further apply AlignedCoT for rewriting the GSM8k training set, resulting in a GSM8k-Align dataset. We observe its benefits for retrieval augmented generation.

2023

pdf bib
TRIGO: Benchmarking Formal Mathematical Proof Reduction for Generative Language Models
Jing Xiong | Jianhao Shen | Ye Yuan | Haiming Wang | Yichun Yin | Zhengying Liu | Lin Li | Zhijiang Guo | Qingxing Cao | Yinya Huang | Chuanyang Zheng | Xiaodan Liang | Ming Zhang | Qun Liu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Automated theorem proving (ATP) has become an appealing domain for exploring the reasoning ability of the recent successful generative language models. However, current ATP benchmarks are mainly focus on symbolic inference, but rarely involve the understanding of complex number combination reasoning. In this work, we propose TRIGO, an ATP benchmark that not only requires a model to reduce a trigonometric expression with step-by-step proof but also evaluates a generative LM’s reasoning ability on formulas and capability to manipulate, group, and factor number terms. We gather trigonometric expressions and their reduced forms from web, annotate the simplification process manually, and translate it into the “Lean” formal language system. We then automatically generate additional examples from the annotated samples to expand the dataset. Furthermore, we also create three automatically generated training and testing datasets of varying difficulty and distributions. Our extensive experiments show our proposed TRIGO poses a new challenge for advanced generative LM’s including GPT-4 which is pre-trained on a considerable amount of open-source formal theorem-proving language data, and provide a new tool to study the generative LM’s ability on both formal and mathematical reasoning.

2022

pdf bib
MetaLogic: Logical Reasoning Explanations with Fine-Grained Structure
Yinya Huang | Hongming Zhang | Ruixin Hong | Xiaodan Liang | Changshui Zhang | Dong Yu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

In this paper, we propose a comprehensive benchmark to investigate models’ logical reasoning capabilities in complex real-life scenarios. Current explanation datasets often employ synthetic data with simple reasoning structures. Therefore, it cannot express more complex reasoning processes, such as the rebuttal to a reasoning step and the degree of certainty of the evidence. To this end, we propose a comprehensive logical reasoning explanation form. Based on the multi-hop chain of reasoning, the explanation form includes three main components: (1) The condition of rebuttal that the reasoning node can be challenged; (2) Logical formulae that uncover the internal texture of reasoning nodes; (3) Reasoning strength indicated by degrees of certainty. The fine-grained structure conforms to the real logical reasoning scenario, better fitting the human cognitive process but, simultaneously, is more challenging for the current models. We evaluate the current best models’ performance on this new explanation form. The experimental results show that generating reasoning graphs remains a challenging task for current models, even with the help of giant pre-trained language models.

2021

pdf bib
DAGN: Discourse-Aware Graph Network for Logical Reasoning
Yinya Huang | Meng Fang | Yu Cao | Liwei Wang | Xiaodan Liang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent QA with logical reasoning questions requires passage-level relations among the sentences. However, current approaches still focus on sentence-level relations interacting among tokens. In this work, we explore aggregating passage-level clues for solving logical reasoning QA by using discourse-based information. We propose a discourse-aware graph network (DAGN) that reasons relying on the discourse structure of the texts. The model encodes discourse information as a graph with elementary discourse units (EDUs) and discourse relations, and learns the discourse-aware features via a graph network for downstream QA tasks. Experiments are conducted on two logical reasoning QA datasets, ReClor and LogiQA, and our proposed DAGN achieves competitive results. The source code is available at https://github.com/Eleanor-H/DAGN.