Yiqiao Jin
2024
MM-SOC: Benchmarking Multimodal Large Language Models in Social Media Platforms
Yiqiao Jin
|
Minje Choi
|
Gaurav Verma
|
Jindong Wang
|
Srijan Kumar
Findings of the Association for Computational Linguistics: ACL 2024
Social media platforms are hubs for multimodal information exchange, encompassing text, images, and videos, making it challenging for machines to comprehend the information or emotions associated with interactions in online spaces. Multimodal Large Language Models (MLLMs) have emerged as a promising solution to address these challenges, yet struggle with accurately interpreting human emotions and complex contents like misinformation. This paper introduces MM-Soc, a comprehensive benchmark designed to evaluate MLLMs’ understanding of multimodal social media content. MM-Soc compiles prominent multimodal datasets and incorporates a novel large-scale YouTube tagging dataset, targeting a range of tasks from misinformation detection, hate speech detection, and social context generation. Through our exhaustive evaluation on ten size-variants of four open-source MLLMs, we have identified significant performance disparities, highlighting the need for advancements in models’ social understanding capabilities. Our analysis reveals that, in a zero-shot setting, various types of MLLMs generally exhibit difficulties in handling social media tasks. However, MLLMs demonstrate performance improvements post fine-tuning, suggesting potential pathways for improvement.
Prototypical Reward Network for Data-Efficient RLHF
Jinghan Zhang
|
Xiting Wang
|
Yiqiao Jin
|
Changyu Chen
|
Xinhao Zhang
|
Kunpeng Liu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The reward model for Reinforcement Learning from Human Feedback (RLHF) has proven effective in fine-tuning Large Language Models (LLMs). Notably, collecting human feedback for RLHF can be resource-intensive and lead to scalability issues for LLMs and complex tasks. Our proposed framework Proto-RM leverages prototypical networks to enhance reward models under limited human feedback. By enabling stable and reliable structural learning from fewer samples, Proto-RM significantly enhances LLMs' adaptability and accuracy in interpreting human preferences. Extensive experiments on various datasets demonstrate that Proto-RM significantly improves the performance of reward models and LLMs in human feedback tasks, achieving comparable and usually better results than traditional methods, while requiring significantly less data in data-limited scenarios. This research offers a promising direction for enhancing the efficiency of reward models and optimizing the fine-tuning of language models under restricted feedback conditions.
Search
Co-authors
- Minje Choi 1
- Gaurav Verma 1
- Jindong Wang 1
- Srijan Kumar 1
- Jinghan Zhang 1
- show all...