Yiqiao Jin


2024

pdf bib
Prototypical Reward Network for Data-Efficient RLHF
Jinghan Zhang | Xiting Wang | Yiqiao Jin | Changyu Chen | Xinhao Zhang | Kunpeng Liu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The reward model for Reinforcement Learning from Human Feedback (RLHF) has proven effective in fine-tuning Large Language Models (LLMs). Notably, collecting human feedback for RLHF can be resource-intensive and lead to scalability issues for LLMs and complex tasks. Our proposed framework Proto-RM leverages prototypical networks to enhance reward models under limited human feedback. By enabling stable and reliable structural learning from fewer samples, Proto-RM significantly enhances LLMs' adaptability and accuracy in interpreting human preferences. Extensive experiments on various datasets demonstrate that Proto-RM significantly improves the performance of reward models and LLMs in human feedback tasks, achieving comparable and usually better results than traditional methods, while requiring significantly less data in data-limited scenarios. This research offers a promising direction for enhancing the efficiency of reward models and optimizing the fine-tuning of language models under restricted feedback conditions.

pdf bib
AgentReview: Exploring Peer Review Dynamics with LLM Agents
Yiqiao Jin | Qinlin Zhao | Yiyang Wang | Hao Chen | Kaijie Zhu | Yijia Xiao | Jindong Wang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Peer review is fundamental to the integrity and advancement of scientific publication. Traditional methods of peer review analyses often rely on exploration and statistics of existing peer review data, which do not adequately address the multivariate nature of the process, account for the latent variables, and are further constrained by privacy concerns due to the sensitive nature of the data. We introduce AgentReview, the first large language model (LLM) based peer review simulation framework, which effectively disentangles the impacts of multiple latent factors and addresses the privacy issue. Our study reveals significant insights, including a notable 37.1% variation in paper decisions due to reviewers’ biases, supported by sociological theories such as the social influence theory, altruism fatigue, and authority bias. We believe that this study could offer valuable insights to improve the design of peer review mechanisms.

pdf bib
Large Language Models Can Be Contextual Privacy Protection Learners
Yijia Xiao | Yiqiao Jin | Yushi Bai | Yue Wu | Xianjun Yang | Xiao Luo | Wenchao Yu | Xujiang Zhao | Yanchi Liu | Quanquan Gu | Haifeng Chen | Wei Wang | Wei Cheng
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The proliferation of Large Language Models (LLMs) has driven considerable interest in fine-tuning them with domain-specific data to create specialized language models. Nevertheless, such domain-specific fine-tuning data often contains contextually sensitive personally identifiable information (PII). Direct fine-tuning LLMs on this data without privacy protection poses a risk of data leakage of sensitive PII during inference time. To address this challenge, we introduce Contextual Privacy Protection Language Models (CPPLM), a novel paradigm for fine-tuning LLMs that effectively injects domain-specific knowledge while safeguarding inference-time data privacy. Our work offers a theoretical analysis for model design and delves into various techniques such as corpus curation, penalty-based unlikelihood in training loss, and instruction-based tuning, etc. Extensive experiments across diverse datasets and scenarios demonstrate the effectiveness of our approaches. In particular, instruction tuning with both positive and negative examples, stands out as a promising method, effectively protecting private data while enhancing the model’s knowledge. Our work underscores the potential for Large Language Models as robust contextual privacy protection learners.

pdf bib
MM-SOC: Benchmarking Multimodal Large Language Models in Social Media Platforms
Yiqiao Jin | Minje Choi | Gaurav Verma | Jindong Wang | Srijan Kumar
Findings of the Association for Computational Linguistics: ACL 2024

Social media platforms are hubs for multimodal information exchange, encompassing text, images, and videos, making it challenging for machines to comprehend the information or emotions associated with interactions in online spaces. Multimodal Large Language Models (MLLMs) have emerged as a promising solution to address these challenges, yet struggle with accurately interpreting human emotions and complex contents like misinformation. This paper introduces MM-Soc, a comprehensive benchmark designed to evaluate MLLMs’ understanding of multimodal social media content. MM-Soc compiles prominent multimodal datasets and incorporates a novel large-scale YouTube tagging dataset, targeting a range of tasks from misinformation detection, hate speech detection, and social context generation. Through our exhaustive evaluation on ten size-variants of four open-source MLLMs, we have identified significant performance disparities, highlighting the need for advancements in models’ social understanding capabilities. Our analysis reveals that, in a zero-shot setting, various types of MLLMs generally exhibit difficulties in handling social media tasks. However, MLLMs demonstrate performance improvements post fine-tuning, suggesting potential pathways for improvement.