Yixin Nie


2021

pdf bib
Investigating Transfer Learning in Multilingual Pre-trained Language Models through Chinese Natural Language Inference
Hai Hu | He Zhou | Zuoyu Tian | Yiwen Zhang | Yina Patterson | Yanting Li | Yixin Nie | Kyle Richardson
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
To what extent do human explanations of model behavior align with actual model behavior?
Grusha Prasad | Yixin Nie | Mohit Bansal | Robin Jia | Douwe Kiela | Adina Williams
Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

Given the increasingly prominent role NLP models (will) play in our lives, it is important for human expectations of model behavior to align with actual model behavior. Using Natural Language Inference (NLI) as a case study, we investigate the extent to which human-generated explanations of models’ inference decisions align with how models actually make these decisions. More specifically, we define three alignment metrics that quantify how well natural language explanations align with model sensitivity to input words, as measured by integrated gradients. Then, we evaluate eight different models (the base and large versions of BERT,RoBERTa and ELECTRA, as well as anRNN and bag-of-words model), and find that the BERT-base model has the highest alignment with human-generated explanations, for all alignment metrics. Focusing in on transformers, we find that the base versions tend to have higher alignment with human-generated explanations than their larger counterparts, suggesting that increasing the number of model parameters leads, in some cases, to worse alignment with human explanations. Finally, we find that a model’s alignment with human explanations is not predicted by the model’s accuracy, suggesting that accuracy and alignment are complementary ways to evaluate models.

pdf bib
Dynabench: Rethinking Benchmarking in NLP
Douwe Kiela | Max Bartolo | Yixin Nie | Divyansh Kaushik | Atticus Geiger | Zhengxuan Wu | Bertie Vidgen | Grusha Prasad | Amanpreet Singh | Pratik Ringshia | Zhiyi Ma | Tristan Thrush | Sebastian Riedel | Zeerak Waseem | Pontus Stenetorp | Robin Jia | Mohit Bansal | Christopher Potts | Adina Williams
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We introduce Dynabench, an open-source platform for dynamic dataset creation and model benchmarking. Dynabench runs in a web browser and supports human-and-model-in-the-loop dataset creation: annotators seek to create examples that a target model will misclassify, but that another person will not. In this paper, we argue that Dynabench addresses a critical need in our community: contemporary models quickly achieve outstanding performance on benchmark tasks but nonetheless fail on simple challenge examples and falter in real-world scenarios. With Dynabench, dataset creation, model development, and model assessment can directly inform each other, leading to more robust and informative benchmarks. We report on four initial NLP tasks, illustrating these concepts and highlighting the promise of the platform, and address potential objections to dynamic benchmarking as a new standard for the field.

pdf bib
I like fish, especially dolphins: Addressing Contradictions in Dialogue Modeling
Yixin Nie | Mary Williamson | Mohit Bansal | Douwe Kiela | Jason Weston
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

To quantify how well natural language understanding models can capture consistency in a general conversation, we introduce the DialoguE COntradiction DEtection task (DECODE) and a new conversational dataset containing both human-human and human-bot contradictory dialogues. We show that: (i) our newly collected dataset is notably more effective at providing supervision for the dialogue contradiction detection task than existing NLI data including those aimed to cover the dialogue domain; (ii) Transformer models that explicitly hinge on utterance structures for dialogue contradiction detection are more robust and generalize well on both analysis and out-of-distribution dialogues than standard (unstructured) Transformers. We also show that our best contradiction detection model correlates well with human judgments and further provide evidence for its usage in both automatically evaluating and improving the consistency of state-of-the-art generative chatbots.

2020

pdf bib
The Curse of Performance Instability in Analysis Datasets: Consequences, Source, and Suggestions
Xiang Zhou | Yixin Nie | Hao Tan | Mohit Bansal
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We find that the performance of state-of-the-art models on Natural Language Inference (NLI) and Reading Comprehension (RC) analysis/stress sets can be highly unstable. This raises three questions: (1) How will the instability affect the reliability of the conclusions drawn based on these analysis sets? (2) Where does this instability come from? (3) How should we handle this instability and what are some potential solutions? For the first question, we conduct a thorough empirical study over analysis sets and find that in addition to the unstable final performance, the instability exists all along the training curve. We also observe lower-than-expected correlations between the analysis validation set and standard validation set, questioning the effectiveness of the current model-selection routine. Next, to answer the second question, we give both theoretical explanations and empirical evidence regarding the source of the instability, demonstrating that the instability mainly comes from high inter-example correlations within analysis sets. Finally, for the third question, we discuss an initial attempt to mitigate the instability and suggest guidelines for future work such as reporting the decomposed variance for more interpretable results and fair comparison across models.

pdf bib
ConjNLI: Natural Language Inference Over Conjunctive Sentences
Swarnadeep Saha | Yixin Nie | Mohit Bansal
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Reasoning about conjuncts in conjunctive sentences is important for a deeper understanding of conjunctions in English and also how their usages and semantics differ from conjunctive and disjunctive boolean logic. Existing NLI stress tests do not consider non-boolean usages of conjunctions and use templates for testing such model knowledge. Hence, we introduce ConjNLI, a challenge stress-test for natural language inference over conjunctive sentences, where the premise differs from the hypothesis by conjuncts removed, added, or replaced. These sentences contain single and multiple instances of coordinating conjunctions (“and”, “or”, “but”, “nor”) with quantifiers, negations, and requiring diverse boolean and non-boolean inferences over conjuncts. We find that large-scale pre-trained language models like RoBERTa do not understand conjunctive semantics well and resort to shallow heuristics to make inferences over such sentences. As some initial solutions, we first present an iterative adversarial fine-tuning method that uses synthetically created training data based on boolean and non-boolean heuristics. We also propose a direct model advancement by making RoBERTa aware of predicate semantic roles. While we observe some performance gains, ConjNLI is still challenging for current methods, thus encouraging interesting future work for better understanding of conjunctions.

pdf bib
What Can We Learn from Collective Human Opinions on Natural Language Inference Data?
Yixin Nie | Xiang Zhou | Mohit Bansal
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Despite the subjective nature of many NLP tasks, most NLU evaluations have focused on using the majority label with presumably high agreement as the ground truth. Less attention has been paid to the distribution of human opinions. We collect ChaosNLI, a dataset with a total of 464,500 annotations to study Collective HumAn OpinionS in oft-used NLI evaluation sets. This dataset is created by collecting 100 annotations per example for 3,113 examples in SNLI and MNLI and 1,532 examples in αNLI. Analysis reveals that: (1) high human disagreement exists in a noticeable amount of examples in these datasets; (2) the state-of-the-art models lack the ability to recover the distribution over human labels; (3) models achieve near-perfect accuracy on the subset of data with a high level of human agreement, whereas they can barely beat a random guess on the data with low levels of human agreement, which compose most of the common errors made by state-of-the-art models on the evaluation sets. This questions the validity of improving model performance on old metrics for the low-agreement part of evaluation datasets. Hence, we argue for a detailed examination of human agreement in future data collection efforts, and evaluating model outputs against the distribution over collective human opinions.

pdf bib
Simple Compounded-Label Training for Fact Extraction and Verification
Yixin Nie | Lisa Bauer | Mohit Bansal
Proceedings of the Third Workshop on Fact Extraction and VERification (FEVER)

Automatic fact checking is an important task motivated by the need for detecting and preventing the spread of misinformation across the web. The recently released FEVER challenge provides a benchmark task that assesses systems’ capability for both the retrieval of required evidence and the identification of authentic claims. Previous approaches share a similar pipeline training paradigm that decomposes the task into three subtasks, with each component built and trained separately. Although achieving acceptable scores, these methods induce difficulty for practical application development due to unnecessary complexity and expensive computation. In this paper, we explore the potential of simplifying the system design and reducing training computation by proposing a joint training setup in which a single sequence matching model is trained with compounded labels that give supervision for both sentence selection and claim verification subtasks, eliminating the duplicate computation that occurs when models are designed and trained separately. Empirical results on FEVER indicate that our method: (1) outperforms the typical multi-task learning approach, and (2) gets comparable results to top performing systems with a much simpler training setup and less training computation (in terms of the amount of data consumed and the number of model parameters), facilitating future works on the automatic fact checking task and its practical usage.

pdf bib
Adversarial NLI: A New Benchmark for Natural Language Understanding
Yixin Nie | Adina Williams | Emily Dinan | Mohit Bansal | Jason Weston | Douwe Kiela
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We introduce a new large-scale NLI benchmark dataset, collected via an iterative, adversarial human-and-model-in-the-loop procedure. We show that training models on this new dataset leads to state-of-the-art performance on a variety of popular NLI benchmarks, while posing a more difficult challenge with its new test set. Our analysis sheds light on the shortcomings of current state-of-the-art models, and shows that non-expert annotators are successful at finding their weaknesses. The data collection method can be applied in a never-ending learning scenario, becoming a moving target for NLU, rather than a static benchmark that will quickly saturate.

2019

pdf bib
Revealing the Importance of Semantic Retrieval for Machine Reading at Scale
Yixin Nie | Songhe Wang | Mohit Bansal
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Machine Reading at Scale (MRS) is a challenging task in which a system is given an input query and is asked to produce a precise output by “reading” information from a large knowledge base. The task has gained popularity with its natural combination of information retrieval (IR) and machine comprehension (MC). Advancements in representation learning have led to separated progress in both IR and MC; however, very few studies have examined the relationship and combined design of retrieval and comprehension at different levels of granularity, for development of MRS systems. In this work, we give general guidelines on system design for MRS by proposing a simple yet effective pipeline system with special consideration on hierarchical semantic retrieval at both paragraph and sentence level, and their potential effects on the downstream task. The system is evaluated on both fact verification and open-domain multihop QA, achieving state-of-the-art results on the leaderboard test sets of both FEVER and HOTPOTQA. To further demonstrate the importance of semantic retrieval, we present ablation and analysis studies to quantify the contribution of neural retrieval modules at both paragraph-level and sentence-level, and illustrate that intermediate semantic retrieval modules are vital for not only effectively filtering upstream information and thus saving downstream computation, but also for shaping upstream data distribution and providing better data for downstream modeling.

2017

pdf bib
Shortcut-Stacked Sentence Encoders for Multi-Domain Inference
Yixin Nie | Mohit Bansal
Proceedings of the 2nd Workshop on Evaluating Vector Space Representations for NLP

We present a simple sequential sentence encoder for multi-domain natural language inference. Our encoder is based on stacked bidirectional LSTM-RNNs with shortcut connections and fine-tuning of word embeddings. The overall supervised model uses the above encoder to encode two input sentences into two vectors, and then uses a classifier over the vector combination to label the relationship between these two sentences as that of entailment, contradiction, or neural. Our Shortcut-Stacked sentence encoders achieve strong improvements over existing encoders on matched and mismatched multi-domain natural language inference (top single-model result in the EMNLP RepEval 2017 Shared Task (Nangia et al., 2017)). Moreover, they achieve the new state-of-the-art encoding result on the original SNLI dataset (Bowman et al., 2015).