Yong Jae Lee


2024

pdf bib
VGBench: A Comprehensive Benchmark of Vector Graphics Understanding and Generation for Large Language Models
Bocheng Zou | Mu Cai | Jianrui Zhang | Yong Jae Lee
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

In the realm of vision models, the primary mode of representation is using pixels to rasterize the visual world. Yet this is not always the best or unique way to represent visual content, especially for designers and artists who depict the world using geometry primitives such as polygons. Vector graphics (VG), on the other hand, offer a textual representation of visual content, which can be more concise and powerful for content like cartoons, sketches and scientific figures. Recent studies have shown promising results on processing vector graphics with capable Large Language Models (LLMs). However, such works focus solely on qualitative results, understanding, or a specific type of vector graphics. We propose VGBench, a comprehensive benchmark for LLMs on handling vector graphics through diverse aspects, including (a) both visual understanding and generation, (b) evaluation of various vector graphics formats, (c) diverse question types, (d) wide range of prompting techniques, (e) under multiple LLMs and (f) comparison with VLMs on rasterized representations. Evaluating on our collected 4279 understanding and 5845 generation samples, we find that LLMs show strong capability on both aspects while exhibiting less desirable performance on low-level formats (SVG). Both data and evaluation pipeline will be open-sourced.

pdf bib
CounterCurate: Enhancing Physical and Semantic Visio-Linguistic Compositional Reasoning via Counterfactual Examples
Jianrui Zhang | Mu Cai | Tengyang Xie | Yong Jae Lee
Findings of the Association for Computational Linguistics: ACL 2024

We propose CounterCurate, a framework to comprehensively improve the visio-linguistic compositional reasoning capability for both contrastive and generative multimodal models. In particular, we identify two critical under- explored problems: the neglect of physically grounded reasoning (counting and position understanding) and the potential of using highly capable text and image generation models for semantic counterfactual fine-tuning. Our work pioneers an approach in addressing these gaps.We first spotlight the near-chance performance of multimodal models like CLIP and LLaVA in physically grounded compositional reasoning. We then apply simple data augmentation using the grounded image generation model GLIGEN to generate fine-tuning data, resulting in significant performance improvements: +33% and +37% for CLIP and LLaVA, respectively, on our newly curated Flickr30k-Positions benchmark. Moreover, we exploit the capabilities of high-performing text generation and image generation models, specifically GPT-4V and DALLE-3, to curate challenging semantic counterfactuals, thereby further enhancing compositional reasoning capabilities on benchmarks such as SugarCrepe, where CounterCurate outperforms GPT-4V.To facilitate future research, we release ourcode, dataset, benchmark, and checkpoints at https://countercurate.github.io/

pdf bib
MATE: Meet At The Embedding - Connecting Images with Long Texts
Young Kyun Jang | Junmo Kang | Yong Jae Lee | Donghyun Kim
Findings of the Association for Computational Linguistics: EMNLP 2024

While advancements in Vision Language Models (VLMs) have significantly improved the alignment of visual and textual data, these models primarily focus on aligning images with short descriptive captions. This focus limits their ability to handle complex text interactions, particularly with longer texts such as lengthy captions or documents, which have not been extensively explored yet. In this paper, we introduce Meet At The Embedding (MATE), a novel approach that combines the capabilities of VLMs with Large Language Models (LLMs) to overcome this challenge without the need for additional image-long text pairs. Specifically, we replace the text encoder of the VLM with a pretrained LLM-based encoder that excels in understanding long texts. To bridge the gap between VLM and LLM, MATE incorporates a projection module that is trained in a multi-stage manner. It starts by aligning the embeddings from the VLM text encoder with those from the LLM using extensive text pairs. This module is then employed to seamlessly align image embeddings closely with LLM embeddings. We propose two new cross-modal retrieval benchmarks to assess the task of connecting images with long texts (lengthy captions / documents). Extensive experimental results demonstrate that MATE effectively connects images with long texts, uncovering diverse semantic relationships.

2018

pdf bib
A Visual Attention Grounding Neural Model for Multimodal Machine Translation
Mingyang Zhou | Runxiang Cheng | Yong Jae Lee | Zhou Yu
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We introduce a novel multimodal machine translation model that utilizes parallel visual and textual information. Our model jointly optimizes the learning of a shared visual-language embedding and a translator. The model leverages a visual attention grounding mechanism that links the visual semantics with the corresponding textual semantics. Our approach achieves competitive state-of-the-art results on the Multi30K and the Ambiguous COCO datasets. We also collected a new multilingual multimodal product description dataset to simulate a real-world international online shopping scenario. On this dataset, our visual attention grounding model outperforms other methods by a large margin.