Yong Liao


pdf bib
Counterfactual Active Learning for Out-of-Distribution Generalization
Xun Deng | Wenjie Wang | Fuli Feng | Hanwang Zhang | Xiangnan He | Yong Liao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We study the out-of-distribution generalization of active learning that adaptively selects samples for annotation in learning the decision boundary of classification. Our empirical study finds that increasingly annotating seen samples may hardly benefit the generalization. To address the problem, we propose Counterfactual Active Learning (CounterAL) that empowers active learning with counterfactual thinking to bridge the seen samples with unseen cases. In addition to annotating factual samples, CounterAL requires annotators to answer counterfactual questions to construct counterfactual samples for training. To achieve CounterAL, we design a new acquisition strategy that selects the informative factual-counterfactual pairs for annotation; and a new training strategy that pushes the model update to focus on the discrepancy between factual and counterfactual samples. We evaluate CounterAL on multiple public datasets of sentiment analysis and natural language inference. The experiment results show that CounterAL requires fewer acquisition rounds and outperforms existing active learning methods by a large margin in OOD tests with comparable IID performance.


pdf bib
Attention and Edge-Label Guided Graph Convolutional Networks for Named Entity Recognition
Renjie Zhou | Zhongyi Xie | Jian Wan | Jilin Zhang | Yong Liao | Qiang Liu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

It has been shown that named entity recognition (NER) could benefit from incorporating the long-distance structured information captured by dependency trees. However, dependency trees built by tools usually have a certain percentage of errors. Under such circumstances, how to better use relevant structured information while ignoring irrelevant or wrong structured information from the dependency trees to improve NER performance is still a challenging research problem. In this paper, we propose the Attention and Edge-Label guided Graph Convolution Network (AELGCN) model. Then, we integrate it into BiLSTM-CRF to form BiLSTM-AELGCN-CRF model. We design an edge-aware node joint update module and introduce a node-aware edge update module to explore hidden in structured information entirely and solve the wrong dependency label information to some extent. After two modules, we apply attention-guided GCN, which automatically learns how to attend to the relevant structured information selectively. We conduct extensive experiments on several standard datasets across four languages and achieve better results than previous approaches. Through experimental analysis, it is found that our proposed model can better exploit the structured information on the dependency tree to improve the recognition of long entities.

pdf bib
UniRel: Unified Representation and Interaction for Joint Relational Triple Extraction
Wei Tang | Benfeng Xu | Yuyue Zhao | Zhendong Mao | Yifeng Liu | Yong Liao | Haiyong Xie
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Relational triple extraction is challenging for its difficulty in capturing rich correlations between entities and relations. Existing works suffer from 1) heterogeneous representations of entities and relations, and 2) heterogeneous modeling of entity-entity interactions and entity-relation interactions. Therefore, the rich correlations are not fully exploited by existing works. In this paper, we propose UniRel to address these challenges. Specifically, we unify the representations of entities and relations by jointly encoding them within a concatenated natural language sequence, and unify the modeling of interactions with a proposed Interaction Map, which is built upon the off-the-shelf self-attention mechanism within any Transformer block. With comprehensive experiments on two popular relational triple extraction datasets, we demonstrate that UniRel is more effective and computationally efficient. The source code is available at https://github.com/wtangdev/UniRel.