Yongchang Hao


2024

pdf bib
LLMR: Knowledge Distillation with a Large Language Model-Induced Reward
Dongheng Li | Yongchang Hao | Lili Mou
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Large language models have become increasingly popular and demonstrated remarkable performance in various natural language processing (NLP) tasks. However, these models are typically computationally expensive and difficult to be deployed in resource-constrained environments. In this paper, we propose LLMR, a novel knowledge distillation (KD) method based on a reward function induced from large language models. We conducted experiments on multiple datasets in the dialogue generation and summarization tasks. Empirical results demonstrate that our LLMR approach consistently outperforms traditional KD methods in different tasks and datasets.

2022

pdf bib
Understanding and Improving Sequence-to-Sequence Pretraining for Neural Machine Translation
Wenxuan Wang | Wenxiang Jiao | Yongchang Hao | Xing Wang | Shuming Shi | Zhaopeng Tu | Michael Lyu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper, we present a substantial step in better understanding the SOTA sequence-to-sequence (Seq2Seq) pretraining for neural machine translation (NMT). We focus on studying the impact of the jointly pretrained decoder, which is the main difference between Seq2Seq pretraining and previous encoder-based pretraining approaches for NMT. By carefully designing experiments on three language pairs, we find that Seq2Seq pretraining is a double-edged sword: On one hand, it helps NMT models to produce more diverse translations and reduce adequacy-related translation errors. On the other hand, the discrepancies between Seq2Seq pretraining and NMT finetuning limit the translation quality (i.e., domain discrepancy) and induce the over-estimation issue (i.e., objective discrepancy). Based on these observations, we further propose simple and effective strategies, named in-domain pretraining and input adaptation to remedy the domain and objective discrepancies, respectively. Experimental results on several language pairs show that our approach can consistently improve both translation performance and model robustness upon Seq2Seq pretraining.

2021

pdf bib
Multi-Task Learning with Shared Encoder for Non-Autoregressive Machine Translation
Yongchang Hao | Shilin He | Wenxiang Jiao | Zhaopeng Tu | Michael Lyu | Xing Wang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Non-Autoregressive machine Translation (NAT) models have demonstrated significant inference speedup but suffer from inferior translation accuracy. The common practice to tackle the problem is transferring the Autoregressive machine Translation (AT) knowledge to NAT models, e.g., with knowledge distillation. In this work, we hypothesize and empirically verify that AT and NAT encoders capture different linguistic properties of source sentences. Therefore, we propose to adopt multi-task learning to transfer the AT knowledge to NAT models through encoder sharing. Specifically, we take the AT model as an auxiliary task to enhance NAT model performance. Experimental results on WMT14 En-De and WMT16 En-Ro datasets show that the proposed Multi-Task NAT achieves significant improvements over the baseline NAT models. Furthermore, the performance on large-scale WMT19 and WMT20 En-De datasets confirm the consistency of our proposed method. In addition, experimental results demonstrate that our Multi-Task NAT is complementary to knowledge distillation, the standard knowledge transfer method for NAT.