Yongjian You
2024
Are AI-Generated Text Detectors Robust to Adversarial Perturbations?
Guanhua Huang
|
Yuchen Zhang
|
Zhe Li
|
Yongjian You
|
Mingze Wang
|
Zhouwang Yang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The widespread use of large language models (LLMs) has sparked concerns about the potential misuse of AI-generated text, as these models can produce content that closely resembles human-generated text. Current detectors for AI-generated text (AIGT) lack robustness against adversarial perturbations, with even minor changes in characters or words causing a reversal in distinguishing between human-created and AI-generated text. This paper investigates the robustness of existing AIGT detection methods and introduces a novel detector, the Siamese Calibrated Reconstruction Network (SCRN). The SCRN employs a reconstruction network to add and remove noise from text, extracting a semantic representation that is robust to local perturbations. We also propose a siamese calibration technique to train the model to make equally confident predictions under different noise, which improves the model’s robustness against adversarial perturbations. Experiments on four publicly available datasets show that the SCRN outperforms all baseline methods, achieving 6.5%-18.25% absolute accuracy improvement over the best baseline method under adversarial attacks. Moreover, it exhibits superior generalizability in cross-domain, cross-genre, and mixed-source scenarios. The code is available at https://github.com/CarlanLark/Robust-AIGC-Detector.
2019
Improving Abstractive Document Summarization with Salient Information Modeling
Yongjian You
|
Weijia Jia
|
Tianyi Liu
|
Wenmian Yang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
Comprehensive document encoding and salient information selection are two major difficulties for generating summaries with adequate salient information. To tackle the above difficulties, we propose a Transformer-based encoder-decoder framework with two novel extensions for abstractive document summarization. Specifically, (1) to encode the documents comprehensively, we design a focus-attention mechanism and incorporate it into the encoder. This mechanism models a Gaussian focal bias on attention scores to enhance the perception of local context, which contributes to producing salient and informative summaries. (2) To distinguish salient information precisely, we design an independent saliency-selection network which manages the information flow from encoder to decoder. This network effectively reduces the influences of secondary information on the generated summaries. Experimental results on the popular CNN/Daily Mail benchmark demonstrate that our model outperforms other state-of-the-art baselines on the ROUGE metrics.
Search
Fix data
Co-authors
- Guanhua Huang 1
- Weijia Jia 1
- Zhe Li 1
- Tianyi Liu 1
- Mingze Wang 1
- show all...
Venues
- acl2