Yongjing Cheng


2022

pdf bib
UniTranSeR: A Unified Transformer Semantic Representation Framework for Multimodal Task-Oriented Dialog System
Zhiyuan Ma | Jianjun Li | Guohui Li | Yongjing Cheng
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

As a more natural and intelligent interaction manner, multimodal task-oriented dialog system recently has received great attention and many remarkable progresses have been achieved. Nevertheless, almost all existing studies follow the pipeline to first learn intra-modal features separately and then conduct simple feature concatenation or attention-based feature fusion to generate responses, which hampers them from learning inter-modal interactions and conducting cross-modal feature alignment for generating more intention-aware responses. To address these issues, we propose UniTranSeR, a Unified Transformer Semantic Representation framework with feature alignment and intention reasoning for multimodal dialog systems. Specifically, we first embed the multimodal features into a unified Transformer semantic space to prompt inter-modal interactions, and then devise a feature alignment and intention reasoning (FAIR) layer to perform cross-modal entity alignment and fine-grained key-value reasoning, so as to effectively identify user’s intention for generating more accurate responses. Experimental results verify the effectiveness of UniTranSeR, showing that it significantly outperforms state-of-the-art approaches on the representative MMD dataset.

2021

pdf bib
Intention Reasoning Network for Multi-Domain End-to-end Task-Oriented Dialogue
Zhiyuan Ma | Jianjun Li | Zezheng Zhang | Guohui Li | Yongjing Cheng
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recent years has witnessed the remarkable success in end-to-end task-oriented dialog system, especially when incorporating external knowledge information. However, the quality of most existing models’ generated response is still limited, mainly due to their lack of fine-grained reasoning on deterministic knowledge (w.r.t. conceptual tokens), which makes them difficult to capture the concept shifts and identify user’s real intention in cross-task scenarios. To address these issues, we propose a novel intention mechanism to better model deterministic entity knowledge. Based on such a mechanism, we further propose an intention reasoning network (IR-Net), which consists of joint and multi-hop reasoning, to obtain intention-aware representations of conceptual tokens that can be used to capture the concept shifts involved in task-oriented conversations, so as to effectively identify user’s intention and generate more accurate responses. Experimental results verify the effectiveness of IR-Net, showing that it achieves the state-of-the-art performance on two representative multi-domain dialog datasets.