Yoonsang Lee
2024
Crafting In-context Examples according to LMs’ Parametric Knowledge
Yoonsang Lee
|
Pranav Atreya
|
Xi Ye
|
Eunsol Choi
Findings of the Association for Computational Linguistics: NAACL 2024
In-context learning can improve the performances of knowledge-rich tasks such as question answering. In such scenarios, in-context examples trigger a language model (LM) to surface information stored in its parametric knowledge. We study how to better construct in-context example sets, based on whether the model is aware of the in-context examples. We identify ‘known’ examples, where models can correctly answer from their parametric knowledge, and ‘unknown’ ones. Our experiments show that prompting with ‘unknown’ examples decreases the performance, potentially as it encourages hallucination rather than searching for its parametric knowledge. Constructing an in-context example set that presents both known and unknown information performs the best across diverse settings. We perform analysis on three multi-answer question answering datasets, which allows us to further study answer set ordering strategies based on the LM’s knowledge of each answer. Together, our study sheds light on how to best construct in-context example sets for knowledge-rich tasks.
Disentangling Questions from Query Generation for Task-Adaptive Retrieval
Yoonsang Lee
|
Minsoo Kim
|
Seung-won Hwang
Findings of the Association for Computational Linguistics: EMNLP 2024
This paper studies the problem of information retrieval, to adapt to unseen tasks. Existing work generates synthetic queries from domain-specific documents to jointly train the retriever. However, the conventional query generator assumes the query as a question, thus failing to accommodate general search intents. A more lenient approach incorporates task-adaptive elements, such as few-shot learning with an 137B LLM. In this paper, we challenge a trend equating query and question, and instead conceptualize query generation task as a “compilation” of high-level intent into task-adaptive query. Specifically, we propose EGG, a query generator that better adapts to wide search intents expressed in the BeIR benchmark. Our method outperforms baselines and existing models on four tasks with underexplored intents, while utilizing a query generator 47 times smaller than the previous state-of-the-art. Our findings reveal that instructing the LM with explicit search intent is a key aspect of modeling an effective query generator.
2023
MILAB at PragTag-2023: Enhancing Cross-Domain Generalization through Data Augmentation with Reduced Uncertainty
Yoonsang Lee
|
Dongryeol Lee
|
Kyomin Jung
Proceedings of the 10th Workshop on Argument Mining
This paper describes our submission to the PragTag task, which aims to categorize each sentence from peer reviews into one of the six distinct pragmatic tags. The task consists of three conditions: full, low, and zero, each distinguished by the number of training data and further categorized into five distinct domains. The main challenge of this task is the domain shift, which is exacerbated by non-uniform distribution and the limited availability of data across the six pragmatic tags and their respective domains. To address this issue, we predominantly employ two data augmentation techniques designed to mitigate data imbalance and scarcity: pseudo-labeling and synonym generation. We experimentally demonstrate the effectiveness of our approaches, achieving the first rank under the zero condition and the third in the full and low conditions.
Search
Fix data
Co-authors
- Pranav Atreya 1
- Eunsol Choi 1
- Seung-won Hwang 1
- Kyomin Jung 1
- Minsoo Kim 1
- show all...