Youcheng Sun
2024
Probing the Uniquely Identifiable Linguistic Patterns of Conversational AI Agents
Iqra Zahid
|
Tharindu Madusanka
|
Riza Batista-Navarro
|
Youcheng Sun
Findings of the Association for Computational Linguistics: ACL 2024
The proliferation of Conversational AI agents (CAAs) has emphasised the need to distinguish between human and machine-generated texts, with implications spanning digital forensics and cybersecurity. While prior research primarily focussed on distinguishing human from machine-generated text, our study takes a more refined approach by analysing different CAAs. We construct linguistic profiles for five CAAs, aiming to identify Uniquely Identifiable Linguistic Patterns (UILPs) for each model using authorship attribution techniques. Authorship attribution (AA) is the task of identifying the author of an unknown text from a pool of known authors. Our research seeks to answer crucial questions about the existence of UILPs in CAAs, the linguistic overlap between various text types generated by these models, and the feasibility of Authorship Attribution (AA) for CAAs based on UILPs. Promisingly, we are able to attribute CAAs based on their original texts with a weighted F1-score of 96.94%. Further, we are able to attribute CAAs according to their writing style (as specified by prompts), yielding a weighted F1-score of 95.84%, which sets the baseline for this task. By employing principal component analysis (PCA), we identify the top 100 most informative linguistic features for each CAA, achieving a weighted F1-score ranging from 86.04% to 97.93%, and an overall weighted F1-score of 93.86%.
Multi-Loss Fusion: Angular and Contrastive Integration for Machine-Generated Text Detection
Iqra Zahid
|
Yue Chang
|
Tharindu Madusanka
|
Youcheng Sun
|
Riza Batista-Navarro
Findings of the Association for Computational Linguistics: EMNLP 2024
Modern natural language generation (NLG) systems have led to the development of synthetic human-like open-ended texts, posing concerns as to who the original author of a text is. To address such concerns, we introduce DeB-Ang: the utilisation of a custom DeBERTa model with angular loss and contrastive loss functions for effective class separation in neural text classification tasks. We expand the application of this model on binary machine-generated text detection and multi-class neural authorship attribution. We demonstrate improved performance on many benchmark datasets whereby the accuracy for machine-generated text detection was increased by as much as 38.04% across all datasets.
Search