Youliang Yuan


2024

pdf bib
All Languages Matter: On the Multilingual Safety of LLMs
Wenxuan Wang | Zhaopeng Tu | Chang Chen | Youliang Yuan | Jen-tse Huang | Wenxiang Jiao | Michael Lyu
Findings of the Association for Computational Linguistics ACL 2024

Safety lies at the core of developing and deploying large language models (LLMs). However, previous safety benchmarks only concern the safety in one language, e.g. the majority language in the pretraining data such as English. In this work, we build the first multilingual safety benchmark for LLMs, XSafety, in response to the global deployment of LLMs in practice. XSafety covers 14 kinds of commonly used safety issues across 10 languages that span several language families. We utilize XSafety to empirically study the multilingual safety for 4 widely-used LLMs, including both close-API and open-source models. Experimental results show that all LLMs produce significantly more unsafe responses for non-English queries than English ones, indicating the necessity of developing safety alignment for non-English languages. In addition, we propose a simple and effective prompting method to improve the multilingual safety of ChatGPT by enhancing cross-lingual generalization of safety alignment. Our prompting method can significantly reduce the ratio of unsafe responses by 42% for non-English queries. We will release all the data and results to facilitate future research on LLMs’ safety.

pdf bib
Does ChatGPT Know That It Does Not Know? Evaluating the Black-Box Calibration of ChatGPT
Youliang Yuan | Wenxuan Wang | Qingshuo Guo | Yiming Xiong | Chihao Shen | Pinjia He
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Recently, ChatGPT has demonstrated remarkable performance in various downstream tasks such as open-domain question answering, machine translation, and code generation. As a general-purpose task solver, an intriguing inquiry arises: Does ChatGPT itself know that it does not know, without any access to internal states? In response to this query, we present an initial evaluation of ChatGPT for black-box calibration. We designed three types of proxy confidence, from three perspectives to assess its performance. Experiments are conducted on five datasets, spanning four tasks, and the results show that ChatGPT has a degree of capability for black-box calibration. Specifically, proxy confidence displayed a significantly positive Pearson correlation (95.16%) with accuracy in the TruthfulQA dataset, while revealing a negative correlation in the ModAr dataset. We delved deeper into ChatGPT’s black-box calibration ability by examining failure cases in the ModAr dataset. Our analysis revealed that ChatGPT’s tendency to exhibit overconfidence may stem from its reliance on semantic priors. Furthermore, we investigated why ChatGPT performs relatively well in TruthfulQA. The findings suggest that ChatGPT might implicitly acquire calibration skills during the reinforcement learning process, rather than relying solely on simplistic heuristics.