Young Jin Kim


pdf bib
FastFormers: Highly Efficient Transformer Models for Natural Language Understanding
Young Jin Kim | Hany Hassan
Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing

Transformer-based models are the state-of-the-art for Natural Language Understanding (NLU) applications. Models are getting bigger and better on various tasks. However, Transformer models remain computationally challenging since they are not efficient at inference-time compared to traditional approaches. In this paper, we present FastFormers, a set of recipes to achieve efficient inference-time performance for Transformer-based models on various NLU tasks. We show how carefully utilizing knowledge distillation, structured pruning and numerical optimization can lead to drastic improvements on inference efficiency. We provide effective recipes that can guide practitioners to choose the best settings for various NLU tasks and pretrained models. Applying the proposed recipes to the SuperGLUE benchmark, we achieve from 9.8x up to 233.9x speed-up compared to out-of-the-box models on CPU. On GPU, we also achieve up to 12.4x speed-up with the presented methods. We show that FastFormers can drastically reduce cost of serving 100 million requests from 4,223 USD to just 18 USD on an Azure F16s_v2 instance. This translates to a sustainable runtime by reducing energy consumption 6.9x - 125.8x according to the metrics used in the SustaiNLP 2020 shared task.


pdf bib
From Research to Production and Back: Ludicrously Fast Neural Machine Translation
Young Jin Kim | Marcin Junczys-Dowmunt | Hany Hassan | Alham Fikri Aji | Kenneth Heafield | Roman Grundkiewicz | Nikolay Bogoychev
Proceedings of the 3rd Workshop on Neural Generation and Translation

This paper describes the submissions of the “Marian” team to the WNGT 2019 efficiency shared task. Taking our dominating submissions to the previous edition of the shared task as a starting point, we develop improved teacher-student training via multi-agent dual-learning and noisy backward-forward translation for Transformer-based student models. For efficient CPU-based decoding, we propose pre-packed 8-bit matrix products, improved batched decoding, cache-friendly student architectures with parameter sharing and light-weight RNN-based decoder architectures. GPU-based decoding benefits from the same architecture changes, from pervasive 16-bit inference and concurrent streams. These modifications together with profiler-based C++ code optimization allow us to push the Pareto frontier established during the 2018 edition towards 24x (CPU) and 14x (GPU) faster models at comparable or higher BLEU values. Our fastest CPU model is more than 4x faster than last year’s fastest submission at more than 3 points higher BLEU. Our fastest GPU model at 1.5 seconds translation time is slightly faster than last year’s fastest RNN-based submissions, but outperforms them by more than 4 BLEU and 10 BLEU points respectively.