Young Min Cho


2024

pdf bib
Using Daily Language to Understand Drinking: Multi-Level Longitudinal Differential Language Analysis
Matthew Matero | Huy Vu | August Nilsson | Syeda Mahwish | Young Min Cho | James McKay | Johannes Eichstaedt | Richard Rosenthal | Lyle Ungar | H. Andrew Schwartz
Proceedings of the 9th Workshop on Computational Linguistics and Clinical Psychology (CLPsych 2024)

Analyses for linking language with psychological factors or behaviors predominately treat linguistic features as a static set, working with a single document per person or aggregating across multiple posts (e.g. on social media) into a single set of features. This limits language to mostly shed light on between-person differences rather than changes in behavior within-person. Here, we collected a novel dataset of daily surveys where participants were asked to describe their experienced well-being and report the number of alcoholic beverages they had within the past 24 hours. Through this data, we first build a multi-level forecasting model that is able to capture within-person change and leverage both the psychological features of the person and daily well-being responses. Then, we propose a longitudinal version of differential language analysis that finds patterns associated with drinking more (e.g. social events) and less (e.g. task-oriented), as well as distinguishing patterns of heavy drinks versus light drinkers.

2023

pdf bib
An Integrative Survey on Mental Health Conversational Agents to Bridge Computer Science and Medical Perspectives
Young Min Cho | Sunny Rai | Lyle Ungar | João Sedoc | Sharath Guntuku
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Mental health conversational agents (a.k.a. chatbots) are widely studied for their potential to offer accessible support to those experiencing mental health challenges. Previous surveys on the topic primarily consider papers published in either computer science or medicine, leading to a divide in understanding and hindering the sharing of beneficial knowledge between both domains. To bridge this gap, we conduct a comprehensive literature review using the PRISMA framework, reviewing 534 papers published in both computer science and medicine. Our systematic review reveals 136 key papers on building mental health-related conversational agents with diverse characteristics of modeling and experimental design techniques. We find that computer science papers focus on LLM techniques and evaluating response quality using automated metrics with little attention to the application while medical papers use rule-based conversational agents and outcome metrics to measure the health outcomes of participants. Based on our findings on transparency, ethics, and cultural heterogeneity in this review, we provide a few recommendations to help bridge the disciplinary divide and enable the cross-disciplinary development of mental health conversational agents.

2022

pdf bib
Unsupervised Entity Linking with Guided Summarization and Multiple-Choice Selection
Young Min Cho | Li Zhang | Chris Callison-Burch
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Entity linking, the task of linking potentially ambiguous mentions in texts to corresponding knowledge-base entities, is an important component for language understanding. We address two challenge in entity linking: how to leverage wider contexts surrounding a mention, and how to deal with limited training data. We propose a fully unsupervised model called SumMC that first generates a guided summary of the contexts conditioning on the mention, and then casts the task to a multiple-choice problem where the model chooses an entity from a list of candidates. In addition to evaluating our model on existing datasets that focus on named entities, we create a new dataset that links noun phrases from WikiHow to Wikidata. We show that our SumMC model achieves state-of-the-art unsupervised performance on our new dataset and on exiting datasets.