Youngseo Son


2024

pdf bib
Multimodal Contextual Dialogue Breakdown Detection for Conversational AI Models
Md Messal Monem Miah | Ulie Schnaithmann | Arushi Raghuvanshi | Youngseo Son
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6: Industry Track)

Detecting dialogue breakdown in real time is critical for conversational AI systems, because it enables taking corrective action to successfully complete a task. In spoken dialog systems, this breakdown can be caused by a variety of unexpected situations including high levels of background noise, causing STT mistranscriptions, or unexpected user flows.In particular, industry settings like healthcare, require high precision and high flexibility to navigate differently based on the conversation history and dialogue states. This makes it both more challenging and more critical to accurately detect dialog breakdown. To accurately detect breakdown, we found it requires processing audio inputs along with downstream NLP model inferences on transcribed text in real time. In this paper, we introduce a Multimodal Contextual Dialogue Breakdown (MultConDB) model. This model significantly outperforms other known best models by achieving an F1 of 69.27.

pdf bib
Graph Integrated Language Transformers for Next Action Prediction in Complex Phone Calls
Amin Marani | Ulie Schnaithmann | Youngseo Son | Akil Iyer | Manas Paldhe | Arushi Raghuvanshi
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6: Industry Track)

Current Conversational AI systems employ different machine learning pipelines, as well as external knowledge sources and business logic to predict the next action. Maintaining various components in dialogue managers’ pipeline adds complexity in expansion and updates, increases processing time, and causes additive noise through the pipeline that can lead to incorrect next action prediction. This paper investigates graph integration into language transformers to improve understanding the relationships between humans’ utterances, previous, and next actions without the dependency on external sources or components. Experimental analyses on real calls indicate that the proposed Graph Integrated Language Transformer models can achieve higher performance compared to other production level conversational AI systems in driving interactive calls with human users in real-world settings.

2022

pdf bib
Discourse Relation Embeddings: Representing the Relations between Discourse Segments in Social Media
Youngseo Son | Vasudha Varadarajan | H. Andrew Schwartz
Proceedings of the Workshop on Unimodal and Multimodal Induction of Linguistic Structures (UM-IoS)

Discourse relations are typically modeled as a discrete class that characterizes the relation between segments of text (e.g. causal explanations, expansions). However, such predefined discrete classes limit the universe of potential relationships and their nuanced differences. Adding higher-level semantic structure to contextual word embeddings, we propose representing discourse relations as points in high dimensional continuous space. However, unlike words, discourse relations often have no surface form (relations are in between two segments, often with no word or phrase in that gap) which presents a challenge for existing embedding techniques. We present a novel method for automatically creating discourse relation embeddings (DiscRE), addressing the embedding challenge through a weakly supervised, multitask approach to learn diverse and nuanced relations in social media. Results show DiscRE representations obtain the best performance on Twitter discourse relation classification (macro F1=0.76), social media causality prediction (from F1=0.79 to 0.81), and perform beyond modern sentence and word transformers at traditional discourse relation classification, capturing novel nuanced relations (e.g. relations at the intersection of causal explanations and counterfactuals).

2020

pdf bib
Author’s Sentiment Prediction
Mohaddeseh Bastan | Mahnaz Koupaee | Youngseo Son | Richard Sicoli | Niranjan Balasubramanian
Proceedings of the 28th International Conference on Computational Linguistics

Even though sentiment analysis has been well-studied on a wide range of domains, there hasn’tbeen much work on inferring author sentiment in news articles. To address this gap, we introducePerSenT, a crowd-sourced dataset that captures the sentiment of an author towards the mainentity in a news article. Our benchmarks of multiple strong baselines show that this is a difficultclassification task. BERT performs the best amongst the baselines. However, it only achievesa modest performance overall suggesting that fine-tuning document-level representations aloneisn’t adequate for this task. Making paragraph-level decisions and aggregating over the entiredocument is also ineffective. We present empirical and qualitative analyses that illustrate thespecific challenges posed by this dataset. We release this dataset with 5.3k documents and 38kparagraphs with 3.2k unique entities as a challenge in entity sentiment analysis.

2019

pdf bib
Suicide Risk Assessment with Multi-level Dual-Context Language and BERT
Matthew Matero | Akash Idnani | Youngseo Son | Salvatore Giorgi | Huy Vu | Mohammad Zamani | Parth Limbachiya | Sharath Chandra Guntuku | H. Andrew Schwartz
Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology

Mental health predictive systems typically model language as if from a single context (e.g. Twitter posts, status updates, or forum posts) and often limited to a single level of analysis (e.g. either the message-level or user-level). Here, we bring these pieces together to explore the use of open-vocabulary (BERT embeddings, topics) and theoretical features (emotional expression lexica, personality) for the task of suicide risk assessment on support forums (the CLPsych-2019 Shared Task). We used dual context based approaches (modeling content from suicide forums separate from other content), built over both traditional ML models as well as a novel dual RNN architecture with user-factor adaptation. We find that while affect from the suicide context distinguishes with no-risk from those with “any-risk”, personality factors from the non-suicide contexts provide distinction of the levels of risk: low, medium, and high risk. Within the shared task, our dual-context approach (listed as SBU-HLAB in the official results) achieved state-of-the-art performance predicting suicide risk using a combination of suicide-context and non-suicide posts (Task B), achieving an F1 score of 0.50 over hidden test set labels.

2018

pdf bib
Causal Explanation Analysis on Social Media
Youngseo Son | Nipun Bayas | H. Andrew Schwartz
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Understanding causal explanations - reasons given for happenings in one’s life - has been found to be an important psychological factor linked to physical and mental health. Causal explanations are often studied through manual identification of phrases over limited samples of personal writing. Automatic identification of causal explanations in social media, while challenging in relying on contextual and sequential cues, offers a larger-scale alternative to expensive manual ratings and opens the door for new applications (e.g. studying prevailing beliefs about causes, such as climate change). Here, we explore automating causal explanation analysis, building on discourse parsing, and presenting two novel subtasks: causality detection (determining whether a causal explanation exists at all) and causal explanation identification (identifying the specific phrase that is the explanation). We achieve strong accuracies for both tasks but find different approaches best: an SVM for causality prediction (F1 = 0.791) and a hierarchy of Bidirectional LSTMs for causal explanation identification (F1 = 0.853). Finally, we explore applications of our complete pipeline (F1 = 0.868), showing demographic differences in mentions of causal explanation and that the association between a word and sentiment can change when it is used within a causal explanation.

2017

pdf bib
Human Centered NLP with User-Factor Adaptation
Veronica Lynn | Youngseo Son | Vivek Kulkarni | Niranjan Balasubramanian | H. Andrew Schwartz
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

We pose the general task of user-factor adaptation – adapting supervised learning models to real-valued user factors inferred from a background of their language, reflecting the idea that a piece of text should be understood within the context of the user that wrote it. We introduce a continuous adaptation technique, suited for real-valued user factors that are common in social science and bringing us closer to personalized NLP, adapting to each user uniquely. We apply this technique with known user factors including age, gender, and personality traits, as well as latent factors, evaluating over five tasks: POS tagging, PP-attachment, sentiment analysis, sarcasm detection, and stance detection. Adaptation provides statistically significant benefits for 3 of the 5 tasks: up to +1.2 points for PP-attachment, +3.4 points for sarcasm, and +3.0 points for stance.

pdf bib
Recognizing Counterfactual Thinking in Social Media Texts
Youngseo Son | Anneke Buffone | Joe Raso | Allegra Larche | Anthony Janocko | Kevin Zembroski | H Andrew Schwartz | Lyle Ungar
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Counterfactual statements, describing events that did not occur and their consequents, have been studied in areas including problem-solving, affect management, and behavior regulation. People with more counterfactual thinking tend to perceive life events as more personally meaningful. Nevertheless, counterfactuals have not been studied in computational linguistics. We create a counterfactual tweet dataset and explore approaches for detecting counterfactuals using rule-based and supervised statistical approaches. A combined rule-based and statistical approach yielded the best results (F1 = 0.77) outperforming either approach used alone.